|
[1] J. D. Taylor, Introduction to Ultra Wideband Radar Systems, Boca Raton, FL: CRC, 1995. [2] R. Fontanna. A Brief History of UWB Communications. [Online]. Available: http:// www.multispectral.com. [3] “FCC Notice of Proposed Rule Making, Revision of Part 15 of The Commission’s Rules Regarding Ultra-Wideband Transmission System,” Federal Communications Commission, Washington, DC, ET-Docket 98-153. [4] K. W. Kobayashi and A. K. Oki, “A DC-10GHz High Gain Low Noise GaAs HBT Direct Coupled Amplifier,” IEEE Microwave and Guided Wave Letters, vol. 5, pp. 308-310, Sept. 1995. [5] L. Yang and G. B. Giannakis, “Ultra-Wideband Communications: An Idea Whose Time Has Come,” IEEE Signal Processing Magazine, vol. 21, issue 6, pp. 26-54, Nov. 2004. [6] “Federal communications commission,” http://www.fcc.gov. [7] C. E. Shannon, “A Mathematical Theory of Communications,” in Proc. IRE, vol. 37, pp. 10-21, Jan. 1949. [8] M. L. Welborn, “System Considerations for Ultra-Wideband Wireless Networks,” in Proc. IEEE Radio and Wireless Conference, RAWCON, pp. 5-8, Aug. 2001. [9] Http://www.ieee802.org/15/pub/TG3a.html, Meger2-proposal-dc-uwb-update.doc. [10] Http://www.ieee802.org/15/pub/TG3a.html, Multi-band-CFP-document.doc. [11] A. Batra, J. Balajrishnan, and A. Dabak, “Multiband OFDM: Why it wins for UWB,” commsdesign, June 2004. [12] P. E. Allen and D. R. Holberg, CMOS analog circuit design, second edition, Oxford university press 2002. [13] J. LEE and J. D. Cressler, “A 3-10GHz SiGe Resistive Feedback Low Noise Amplifier For UWB Applications,” IEEE RFIC Digest, pp. 545-548, 2005. [14] A. Ismail and A. A. Abidi, “A 3-10 GHz Low-Noise Amplifier With Wideband LC-Ladder Matching Network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277, Dec. 2004. [15] A. Bevilacqua and A. M. Niknejad, “An Ultra-Wideband CMOS Low-Noise Amplifier for 3.1-10.6 GHz Wireless Receivers,” IEEE J. Solid-State Circuits, vol. 39, pp. 2259-2268, Dec. 2004. [16] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wideband CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275-282, Feb. 2004. [17] R. C. Liu et all, “Design and Analysis of DC to 14 GHz and 22 GHz CMOS Cascade Distributed Amplifier,” IEEE J. Solid-State Circuits, vol. 39, pp. 1370-1374, Aug. 2004. [18] D. K. Shaeffer and T. H. Lee, “A 1.5V, 1.5 GHz CMOS Low Noise Amplifier,” IEEE J. Solid-State Circuits, vol. 37, pp. 745-759, May 1997. [19] E. H. Westerwick, “A 5GHz Band CMOS Low Noise Amplifier with a 2.5dB Noise Figure,” in IEEE Symposium on VLSI Technology, System, and Applications, pp. 224-227, Apr. 2001. [20] A. N. Riddle and R. J. Trew, “A Broadband Amplifier Output Network Design,” in IEEE Trans. Microwave Theory Tech., vol. MIT-30, pp. 192-196, Feb. 1982. [21] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. New York: Cambridge Univ. Press, 2004. [22] R. Hariani, J. Harvey, and R. Sainati, “Analog/RF Physical Layer Issue for UWB Systems,” in Proc. VLSI Design, pp. 941-948, 2004. [23] J. F. Wilson, R. Youell, T. H. Richards, G. Luff, and R. Pilaski, “A Single-Chip VHF and UHF Receiver for Radio Paging,” IEEE J. Solid-State Circuits, vol. 26, no. 12, Dec. 1991.
[24] D. Hull, J. L. Tham, and R. R. Chu, “A Direct-Conversion Receiver for 900 MHz (ISM Band) Spread-Spectrum Digital Cordless Telephone,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1955-1963, Dec. 1996. [25] B. Razavi, “Design of High-Speed, Low-Power Frequency Dividers and Phase-Locked Loops in Deep Submicron CMOS,” IEEE J. Solid-State Circuits, vol. 30, no. 2, pp. 101-109, Feb. 1995. [26] H. T. Friis, “Noise Figure of Radio Receivers,” in Proc. IRE, vol. 32, pp. 419-422, July1944. [27] B. Razavi, RF Microelectronics, Prentice-Hall, 2003. [28] H. Darabi and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple Physical Model,” IEEE J. Solid-State Circuits, vol. 35, no.1, pp. 15-25, Jan. 2000. [29] K. L. Fong and R. G. Meyer, “High-Frequency Nonlinearity Analysis of Common-Emitter and Differential Pair Transconductance Stages,” IEEE J. Solid- State Circuits, vol. 33, pp. 548-555, Apr. 1998. [30] J. Crols and M. Steyaert, “A Single-Chip 900 MHz CMOS Receiver Front-End With A High Performance Low-IF Topology,” IEEE J. Solid-State Circuits, vol. 30, pp. 1483-1492, Dec. 1995. [31] C. W. Kim, M. S. Kang, P. T. Anh, K. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5 GHz UWB system,” IEEE J. Solid-State Circuits, vol.40, pp. 544-547, Feb. 2005. [32] H. C. Doh, Y. K. Jeong, and S. Y. Jung, “Design of CMOS UWB Low Noise Amplifier,” in Proc. IEEE Conference, vol. 2, pp. II-641-II-644, July 2004. [33] “Multi-band OFDM Physical Layer Proposal,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), http://grouper.ieee.org/groups/802/15/ pub/2003/03267r6P802_15_TG3a-Multi-band-OFDM-CFP-Presentation.ppt. [34] Y. Park, R. Mukhopadhyay, A. Wakejima, K. Lim, C. H. Lee, and J. Laskar, “Ultra-Wideband (UWB) RF front-end Module Implementation For Multi-band OFDM System,” IEEE Microwave Symposium Digest, pp. 1871-1874, June 2005. [35] B. S. Michael and Y. M. Chia, “A 3.1-10.6 GHz RF Front-End for MultiBand UWB Wireless Receivers,” IEEE RFIC Symposium Digest, pp. 343-346, June 2005. [36] P. Heydari, “A Study of Low-Power Ultra Wideband Radio Transceiver Architectures,” in Proc. IEEE Wireless Communications and Networking Conference, vol. 2, pp. 758-763, March 2005. [37] D. D. Wentzloff, R. Blazquez, F. S. Lee, B. P. Ginsburg, J. Powell, and A. P. Chandrakasan, “System Design Considerations for Ultra-Wideband Communication,” IEEE Communications Magazine, vol. 43, issue 8, pp. 114-121, Aug. 2005. [38] S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultra-Wideband Radio Design: The Promise of High-Speed, Short-Range Wireless Connectivity,” in Proc. IEEE, vol. 92, issue 2, pp. 295-311, Feb. 2004.
|