跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 11:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張明弘
研究生(外文):Ming-Hung Chang
論文名稱:具有自我產生模糊類神經控制器之永磁式同步馬達速度控制設計
論文名稱(外文):SPEED CONTROL APPROACH OF THE PERMANENT-MAGNET SYNCHRONOUS MOTOR USING AUTOMATIC GENERATION FUZZY NEURAL NETWORK CONTROLLER
指導教授:呂虹慶
指導教授(外文):Hung-Ching Lu
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:68
中文關鍵詞:模糊類神經網路
外文關鍵詞:FUZZY NEURAL NETWORK CONTROLLER
相關次數:
  • 被引用被引用:0
  • 點閱點閱:311
  • 評分評分:
  • 下載下載:111
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了一個自我產生的類神經模糊控制器,首先控制器的功能能即時控制永磁式同步馬達的轉速,其目的為了追蹤週期性的步階及正弦參考輸入訊號。而控制器的神經元具有自我建構的能力,神經元建構後會做線上的參數學習。參數學習是在輸入神經元的部份,學習的方法是使用監督式梯度下降法。最後以幾個模擬結果,來驗證我們所提出的自我產生類神經模糊控制器,在馬達參數的變化或加入外部的負載干擾下,具有快速的學習能力及準確的追蹤性能。
This thesis presents the design and implementation of an Automatic Generation Fuzzy Neural Network (ADFNN) controller suitable for real-time control of the speed control of the permanent-magnet synchronous motor (PMSM) to track periodic step and sinusoidal reference inputs. The structure and parameter learning are done automatic and online. The structure learning is based on the partition of input space, and the parameter learning is based on the supervised gradient decent method using a delta law. Several simulation results are provided to demonstrate fast learning rate and accurate tracking performance of the proposed ADFNN control stratagem under the occurrence of parameter variations and external disturbance.
CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
CHAPTER
1. INTRODUCTION 1
2. THE FUNDAMENTAL OF FUZZY SYSTEM AND NEURA NETWORK AND FUZZY NEURAL NETWORK 5
2.1 The Basic Concept of Fuzzy System 5
2.1.1 Fuzzification Interface 7
2.1.2 Knowledge Base 7
2.1.3 Inference Engine 8
2.1.4 Defuzzification Interface 9
2.2 The Basic Concept of Neural Network 10
2.3 The Basic Concept of Fuzzy Neural Network 16

3. AUTOMATIC GENERATION FUZZY NEURAL NETWORK 20
3.1 Control of the Rotor Speed of a Permanent-Magnet Synchronous
Motor Drive System 20
3.2 Structure of the Automatic Generation Fuzzy Neural Network 24
3.3 Online Learning Algorithms for AGFNN 27
3.3.1 Structure Learning Phase 28
3.3.2 Parameter Learning Phase 32
4. SIMULATION RESULTS 37
4.1 Simulation Results for PI Speed Controller and Self-Constructing
Fuzzy Neural Speed Controller 37
4.2 Simulation Results for AGFNN Speed Controller 56
5. CONCLUSION 64
REFERENCES 65
[1]C. C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller—Part I and part II,” IEEE Trans. Syst., Man, Cybern., vol. 20, pp. 404-436, 1990.
[2]R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control, New York: Wiley, 1994.
[3]T. Fukuda and T. Shibata, “Theory and applications of neural networks for industrial control systems,” IEEE Trans. Ind. Electron., vol. 39, pp. 472-491, 1992.
[4]P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron networks for identification and control of dynamical systems,” IEEE Trans. Neural Networks, vol. 5, pp. 306-319, 1994.
[5]C. C. Ku and K. Y. Lee, “Diagonal recurrent networks for dynamic systems control,” IEEE Trans. Neural Networks, vol. 6, pp. 144-156, 1995.
[6]F. J. Lin, W. J. Huang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, pp. 41-52, 1999.
[7]C. T. Sun, “Rule-based structure identification in an adaptive-network-based fuzzy inference system,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 64-73, 1994.
[8]C. T. Lin, “A neural fuzzy control system with structure and parameter learning,” Fuzzy Sets Syst., vol. 70, no. 2, pp. 183-212, 1995.
[9]C. T. Lin and C. S. G. Lee, Neural Fuzzy System: A Neural-Fuzzy Synergism to Intelligent System, Englewood Cliffs, New Jersey: Prentice-Hall, 1996.
[10]C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference network and its application,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 12-32, 1998.

[11]C. J. Lin and C.T. Lin, “An ART-based fuzzy adaptive learning control network,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, 1997.
[12]H. Pomares, I. Rojas, J. Gonzalez and A. Prieto, “Structure identification in complete rule-based fuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 10, no. 3, pp. 349-359, 2002.
[13]C. H. Lee and C. C. Teng, “Identification and control of dynamic systems using recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 349-366, 2000.
[14]Y. Q. Zhang and A. Kandel, “Compensatory neurofuzzy systems with fast learning algorithms,” IEEE Trans. Neural Networks., vol. 9, no. 1, pp. 83-105, 1998.
[15]F. J. Lin, C. H. Lin, and P. H. Shen, “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Tran. Fuzzy Syst., vol. 9, no. 5, pp. 751-759, 2001.
[16]F. J. Lin, R. J. Wai, and C. C. Lee, “Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter,” in Inst. Elect. Eng. Proc. Contr. Theory Appl., vol. 146, pp. 99-107, 1999.
[17]L. A. Zadeh, “Fuzzy set,” Information and control, vol. 8, pp. 338-353, 1965.
[18]L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst., Man, and Cybern., vol. 3, pp. 28-44, 1973.
[19]D. Alpsan, M. Towsey, O. Ozdamar, A. C. Tsoi, and D. N. Ghista, “Efficacy of modified back-propagation and optimisation methods on a real-world medical problem,” IEEE Trans. Neural Networks, vol. 8, no. 6, pp. 945-962, 1995.
[20]R. A. Jacobs, “Increased Rates of Convergence through Learning Rate Adaptation,” IEEE Trans. Neural Networks, vol. 1, pp. 295-307, 1988.

[21]J. M. Zurada, Introduction to Artificial Neural System, Singapore: West Info. Access, 1992.
[22]J. S. Jang, “Self-learning fuzzy controller based on temporal back-propagation,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 714-723, 1992.
[23]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control, ” IEEE Trans. Syst., Man, and Cybern., vol. 15, no. 1, pp. 116-132, 1985.
[24]C. T. Lin and C. S. Lee, “Neural-network-based fuzzy logic control and decision system, “IEEE Trans. Comp., vol. 40, no. 12, pp. 1320-1336, 1991.
[25]S. I. Horikawa, T. Furuhashi, and Y. Uchikawa, “On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 801-806, 1992.
[26]C. T. Lin and C. S. Lee, “Real-time supervised structure/parameter learning for fuzzy neural network,“ IEEE Int. Conf. Fuzzy Syst., San Diego, CA, pp. 1283-1290, 1992.
[27]D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC drives. New York: Oxford Univ., Press, 1996.
[28]W. Leonhard, Control of Electrical Drives, Berlin, Germany: Springer-Verlag, 1996.
[29]F. J. Lin, “Real-time IP position controller design with torque feed-forward control for PM synchronous motor,” IEEE Trans. Ind. Electron., vol. 44, pp. 398-407, 1997.
[30]F. J. Lin, W. J. Huang, and R. J. Wai, “A supervisory FNN control system for tracking periodicic inputs,” IEEE Tran. Fuzzy Syst., vol. 7, pp. 41–52, 1999.
[31]F. J. Lin, “Robust speed-controlled induction-motor drive using EKF and RLS estimators,” Inst. Elect. Eng. Proc. Electron. Power Appl., vol. 143, pp. 186-192, 1996.
[32]J. Godjevac and N. Steele, “Neuro-fuzzy control for basic mobile robot behaviors,” in Fuzzy Logic Techniques for Autonomous Vehicle Navigation, pp. 125-129, vol. 80 , 2001.
[33]M. J. Er, T. P. Tan, S. Y. Loh, “Control of a mobile robot using generalized dynamic fuzzy neural networks,” Microprocessors and Microsystems, vol. 28, pp. 491-498, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文