跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/08 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏以誠
研究生(外文):Ye-Chen Yen
論文名稱:以FPGA實現非同步二維離散餘弦轉換
論文名稱(外文):FPGA IMPLEMENTATION OF ASYNCHRONOUS TWO-DIMENSIONAL DISCRETE COSINE TRANSFORM PROCESSOR
指導教授:林登彬
指導教授(外文):Teng-Pin Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:非同步數位電路
外文關鍵詞:asynchronous digital circuits
相關次數:
  • 被引用被引用:1
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是提出一個適用於CCITT標準的非同步二維離散餘弦轉換處理器與反二維離散餘弦轉換處理器設計,在非同步設計上是用Sutherland Micropipeline 來構成交握式管線設計,而在二維離散餘弦轉換處理的實現上,是用行列分解的方式,把整個架構分成兩個一維離散餘弦轉換處理器與一個行列轉置記憶體,並用Distributed Arithmetic(DA)的方法實現陣列的相乘積,取代乘法器的使用,減少面積與成本。
This thesis proposes an asynchronous discrete cosine transform/inverse discrete cosine transform (DCT/IDCT) processor core compliant with the CCITT recommendation H.261. We use the Sutherland Micropipeline structure to implement an asynchronous pipeline. It makes the data transmit forward by handshake protocol. And we adopt row-column decomposition to separate two-dimensional DCT /IDCT into two one-dimensional DCT/IDCT and a transpose memory. In order to reduce area and cost, we introduce the distributed arithmetic (DA) to take the place of multiplier.
CHINESE ABSTRACT I
ENGLISH ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES X
CHAPTER
I. INTRODUCTION 1
1.1 Motivation 1
1.2 Advantages and Drawbacks of Asynchronous Circuits 2
1.3 Outline of this Thesis 3
II. ASYNCHRONOUS STRUCTURE OF MICROPIPELINE 4
2.1 Concept of asynchronous circuit 4
2.1.1 Different between Synchronous and Asynchronous design 4
2.1.2 Two Categories of Completion Detection 5
2.1.3 Handshake Protocols of Asynchronous system 6
2.2 Micropipeline 8
2.3 Logic Modules for Events 11
III. ALGORITHMS OF DCT AND IDCT 13
3.1 1-D DCT and IDCT 13
3.1.1 Equations of 1-D DCT and IDCT 13
3.1.2 1-D DCT and IDCT Fast Algorithm 15
3.2 2-D DCT and IDCT 17
3.3 DCT Architecture Comparison 18
IV. DISTRIBUTED ARITHMETIC 21
4.1 Overview of Distributed Arithmetic 21
4.2 Algorithm of Distributed Arithmetic 22
4.3 Architecture of Distributed Arithmetic 22
V. SYSTEM ARCHITECTURE AND IMPLEMENTATION RESULT 28
5.1 Block Diagram of Asynchronous DCT Processor 28
5.2 Blocks of DCT Processor 30
5.2.1 Blocks of Pre-processing 33
5.2.2 Blocks of Distributed Arithmetic 38
5.3 Architecture of Transpose RAM 43
5.4 Asynchronous 2-D IDCT Processor 47
5.5 Implementation Result 49
5.5.1 Design Flow 49
5.5.2 Simulation Result 51
VI. CONCLUSION AND FUTURE WORK 61
REFERENCES 63
[1]M. A. Franklin and T. Pan, “Performance comparison of asynchronous adders,” in Proc. Symp. Advanced Res. Asynchronous Ciruits and Syst., Salt Lake City, UT, Nov. 1994, pp. 117-125.
[2]I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp. 720-738, June 1989.
[3]S. Nowick, “Design of a low-latency asynchronous adder using speculative completion,” IEE Proc. Comput. Digital Techniques, vol. 143, pp. 301–307, Sept. 1996.
[4]S. B. Furber and P. Da, “Four-phase micropipeline latch control circuits,” IEEE Trans.VLSI Syst., vol. 4, pp. 247–253, June 1996.
[5]P. Day and J. V. Woods, “Investigation into micropipeline latch design styles,” IEEE Trans. VLSI Syst., vol. 3, pp. 264–272, June 1995.
[6]K. K. Parhi, VLSI digital signal processing systems, John Wiley & Sons, Inc, 1999.
[7]W. Chen, C. H. Smith, and S. C. Fralick, “A fast computational algorithm for the discrete cosine transform,” IEEE Trans. Commun., vol. COM-25, pp. 1004–1009, Sept. 1977.
[8]P. Pirsch, N. Demassieux, W. Gehrke, “VLSI architectures for video compression,” Proc. IEEE, vol. 83, Feb. 1995.
[9]S. A. White, “Applichtion of distributed arithmetic to digital signal processing: a tutorial review,” IEEE ASSP Mag., pp. 4-19, July 1989.
[10]M. Shams, J. C. Ebergen, and M. I. Elmasry, “Modeling and comparing CMOS implementations of the C-element,” IEEE Trans. VLSI Systems, vol. 6, no. 4, pp. 563–567, Dec. 1998.
[11]D. Johnson, V. Akella, and B. Stott, “Micropipelined asynchronous discrete cosine transform (DCT/IDCT) processor,” IEEE Trans. VLSI Syst., vol. 6, pp. 731–740, 1998.
[12]G. A. Ruiz, “Evaluation of three 32-bit CMOS adder in DCVS logic for self-timed circuits,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 604–613, 1998.
[13]G. A. Ruiz and M. A. Manzano, “Compact 32-bit CMOS adder in multiple-output DCVS logic for self-timed circuits,” Proc. Circuits Devices Syst., vol. 147, no. 3, pp. 183–188, 2000.
[14]R. Zurawski and M. Zhou, “Petri nets and industrial applications; Atutorial,” IEEE Trans. Ind. Electron., vol 41, pp. 567–583, Dec. 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top