跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林尉鈞
研究生(外文):Wei-Jun Lin
論文名稱:擾動法應用於空間彎樑之自然振動分析
論文名稱(外文):Natural Vibration Analysis of Spatially Curved Beams By Using Perturbation Method
指導教授:史耀東魏哲弘
指導教授(外文):Yaw-Dong ShihChe-Hung Wei
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:80
中文關鍵詞:擾動法空間彎樑振動分析
外文關鍵詞:Perturbation MethodSpatially Curved BeamsV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
空間彎樑振動的統御方程式是由運動平衡及應變與位移之關係求得,此無因次系統的微分方程式是由空間彎樑三個位移與三個轉動角所求得。假設位移函數的時間部分為簡諧型態,可將為分方程式化簡為僅樑與樑座標相關的常微分方程。為了觀察位移及撓角的關聯,將十二條方程式化減為六條位移及撓角的微分方程式並考慮邊界條件的限制,當T<<1及T>>K時,以擾動法探討此一特徵值問題的振動頻率。並在不同的材料性質與外型下,討論扭矩對於頻率的影響。
For spatially curve beam, a set of governing equations consisting of equilibrium motion equations and strain-displacement and constitutive relations. This system of non-dimensional ordinary differential equations is obtained in three translation displacements and three rotational angles of the beam. The time dependency in the displacement functions is assumed in exponential form. The twelve governing equations are simplified to a time-independence formulation. In order to observe the relations of displacement vector and rotation vector, simplified to six ordinary differential equations and considering the restriction of boundary condition. The frequency of vibration of eigenvalue problem is solved by using perturbation method when T<<1 and T>>K. At the same time, to discuss the effects of the torsion of the frequency when the different material quality and geometrically form.
LIST OF CONTENTS

ACKNOWLEDGMENT………………………………………...…..…...…I
CHINESE ABSTRACT……………………………………………….……II
ENGLISH ABSTRACT……………………………………………...….…III
LIST OF CONTENTS……………………………………..…………...….IV
LIST OF FIGURES………………………………………………….…….VI
NOMENCLATURE………………………………………….…………..VIII

CHAPTER I
INTRODUCTION…………………………………………………………...1
1.1 Research Motive………………………………….…………….1
1.2 About Perturbation Method………………………….…………5

CHAPTER II
MATHEMATICAL FORMULATION..……………………………………..8
2.1 Basic Assumption………………………………………………8
2.2 Local Coordinate System……………………………….………9
2.3 Motion Equations……………………………………..……….12
CHAPTER III
PERTURBATION METHOD…………..…….............................................15
3.1 Non-dimensional Parameters…………………………….……15
3.2 Perturbation Method…………………………….…………….18

CHAPTER IV
RESULTS AND DISCUSSIONS…………………………..……...……….22
4.1 Solve The Lowest Natural Frequencies…………………….…22
4.2 Numerical Analysis……………………………………...…….38


CHAPTER V
CONCLUSIONS…………………...........…………………………………44
REFERENCE….……………………………………………………...……45
45
REFERENCE

[1]. J.P.Den Hartog, " Mechanical Vibrations (fourth edition) ", New York, McGraw-Hill, 1956
[2]. T.M. Wang, " Fundamental frequency of clamped elliptic arcs for vibrations outside the plane of initial curature ", Journal of Sound and Vibration Vol.42, 1975, pp.515-519
[3]. R.Davis, R.D. Henshell and G.B. Warburton, " Constant curvature beam finite elements for in-plane vibration " , Journal of Sound and Vibration , Vol.25,1972,pp.561-576.
[4]. E.Dokumaci, " Pre-twisted beam elements based on approximation of displacements in fixed directions " , Journal of Sound and Vibration , Vol.52,1977,pp.277-282.
[5]. R.S. Gupta and S.S. Rao, "Finite element eigenvalue analysis of tapered and twisted Timoshenko beams", Journal of Sound and Vibration, Vol.56,1978,pp.187-200
[6]. K.B. Subramanyam and S.K. Kullkarni, "Coupled bending-bending vibrations of pre-twisted cantilever blading allowing for deflection and rotatory inertia by the Reissner method", International Journal of Mechanical Sciences ,Vol.23,1981,pp.517-530.
[7]. T.M. Wang, R.H. Nettleton and B. Keita, "Natural frequencies of out-of-plane vibrations of continuous curved beams", Journal of Sound and Vibration Vol.68, 1973, pp.427-436.
[8]. M.S. Issa,T.M.Wang and B.T. Hsiao, "Extensional vibrations of continous circular curved beams with rotary intertia and shear deformation,1.Free vibration", Journal of Sound and Vibration,Vol. 114,1987,pp.297-308.
[9]. S. Issa, "Natural frequencies of continuous curved beams on Winkler-type foundation", Journal of Sound and Vibration, Vol.127,1988,pp.291-301.
[10]. B.K.Lee and J.F. Wilson, "Free vibrations of arches with variable curv ature", Journal of Sound and Vibration, Vol.136,1989,pp.75-89.
[11]. J.E. Mottershead, "Finite elements for dynamical analysis of helical rods", International Journal of Mechanical Sciences,Vol.22,1982,pp.267-283
[12]. J.E. Mottershead, "The large displacements and dynamic stability of springs using helical finite elements", International Journal of Mechanical Sciences,Vol.24,1982,pp.547-558
[13]. B. Tabarrok,M. Farshad and H. Yi, "Finite element formulation of spatially curved and twisted rods", Computer Methods In Applied Mechanics and Engineering,Vol.70,1988,pp.275-299.
[14]. B. Tabarrok, A.N. Sinclair, M. Farshad and H. Yi, "On the dynamics of spatially curved and twisted rods-A Finite Element Formulation", Journal of Sound and Vibration, Vol.123,1988,pp.315-326.
[15]. T.M. Wang and M. Guilbert, " Effects of rotary inertia and shear on natural frequencies of continuous circular curved beams", International Journal of Soilds Structures Vol.17,1981,pp.281-289.
[16]. T.M. Wang,A.J. Lask and M.F. Ahmad, "Natural frequencies for out-of-plane vibrations of continuous curved beams considering shear and rotary inertia", International Journal of Soilds Structures,Vol.20,1984,pp.257-265.
[17]. Y.D. Shih and T.Y Duh,"Fully developed flow in a helically coiled duct of square cross section", Journal of the Chinese Society of Mechanical Engineers ,Vol.11,1990,pp.203-215.
[18]. C.T. Su, "On the vibrations spatially curved and twisted beams", Thesis for Master of Science Department of Mechanical Engineering Tatung Institute of Technology,1993.
[19]. C.K. Wu, "On the vibrations spatially curved and twisted cantilever beams", Thesis for Master of Science Department of Mechanical Engineering Tatung Institute of Technology,1994.
[20]. Y.Y. Lee, "Vibrations spatially curved and twisted beams by using finite element method", Thesis for Master of Science Department of Mechanical Engineering Tatung Institute of Technology,1996.
[21]. H.C. Liu, " Vibrations of Curved and Twisted Beams by Perturbation Method ", Thesis for Master of Science Department of Mechanical Engineering Tatung Institute of Technology,1998.
[22]. Y.D. Shih, J.K. Chen, Y.C. Chang and J.P. Sheng, " Natural vibration of arbitrary spatially curved rectangular rods with pre-twisted angles " , Journal of Sound and Vibration , Vol.285,2005,pp.925-939.
[23]. Ali Hasan, Nayfeh, " Perturbation methods " , Originally published by Wiley, New York, 1973. Bibliography: p. 387-415.
[24]. K. Nishinari, " A discrete model of an extensible string in three-dimensional space " , Journal of Applied Mechanics 66(1999) 695-701.
[25]. J.E. Mottershead, " Finite elements for dynamic analysis of helical rods ", International Journal of Mechanical Sciences 22(1980) 267-283.
[26]. 陳文照, 曾春風, 游信和, “材料科學與工程導論,” 高利圖書有限公司, 中華民國91年9月20日
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文