資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(18.97.14.85) 您好!臺灣時間:2025/01/21 17:48
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
呂哲匡
研究生(外文):
Jer-Kuang Lu
論文名稱:
任意變化厚度之旋轉圓盤振動分析與最佳形狀設計
論文名稱(外文):
Vibration Analysis and Shape Optimization of Spinning Disks of Arbitrary Thickness
指導教授:
張英俊
指導教授(外文):
Ying -Chun Chang
學位類別:
碩士
校院名稱:
大同大學
系所名稱:
機械工程學系(所)
學門:
工程學門
學類:
機械工程學類
論文種類:
學術論文
論文出版年:
2006
畢業學年度:
94
語文別:
英文
論文頁數:
86
中文關鍵詞:
振動
、
等向性圓盤
、
厚度
、
遺傳演算法
外文關鍵詞:
Vibration
、
Isotropic annular plate
、
Thickness
、
Genetic algorithm
相關次數:
被引用:0
點閱:209
評分:
下載:30
書目收藏:1
本文主要探討的部分為以薄板理論研究任意變化厚度之等向性圓盤的應力分布及臨界轉速。以不同之內外徑比及厚度比評估臨界轉速,結果顯示較大的內外徑比或厚度參數均能有效地增加在較低模態下的臨界轉速。
將遺傳演算法 (G.A. ) 與轉移矩陣法結合來分析要達到應力均勻分布和能提升旋轉圓盤之臨界轉速的形狀設計,數值分析結果得出應力均勻分布之例子顯示內外徑比下降則厚度分布變化劇烈。在高轉速的圓盤之厚度分布會比低轉速的分布較陡峭,高轉速的內徑之厚度會較低轉速的高。
In this study, the stress distribution and critical speed of rotating isotropic disk with arbitrary thickness are investigated based on the thin plate theory. The critical speed is evaluated for different values of radius ratio and thickness ratio. The results show that increasing the values of ratio of radii and thickness parameter can effectively increase the critical speed of the plate for a lower order mode.
By incorporating Genetic algorithm (G.A ) method and transfer matrix
analysis, the shape design of rotating disks for uniform stress distribution
and enhancing critical speed has also been implemended. Numerical
results show that for the case of uniform stress, the thickness distribution of
the disk shows larger variation as the radius ratio is decreased.
The thickness distribution of the disk with a higher rotating speed is more precipitous than those at lower rotating speed. The thickness of inner edge for the disk at high rotating speed is thicker than those at low rotating speed.
CONTENTS
Chinese abstract..................................................I
English abstract.................................................II
Acknowledgements................................................III
Contents.........................................................IV
List of tables....................................................V
List of figures.................................................VII
Nomencalture.....................................................XI
CHAPTER 1 INTRODUCTION............................................1
CHAPTER 2 THEORETICAL ANALYSIS....................................4
2.1 Stress analysis...............................................4
2.2 Transfer matrix..............................................11
CHAPTER 3 GENETIC ALOGRITHM......................................14
CHAPTER 4 RESULTS AND DISCUSSION.................................18
4.1 Experiment of circular plate for natural frequency...........19
4.2 Shape design of disks for uniform stress.....................20
4.3 Optimum Young’s modules distribution........................23
4.4 Shape design of disks for critical speed.....................25
CHAPTER 5 CONCLUSIONS............................................26
REFERENCES.......................................................29
LIST OF TABLES
Table 1 Comparison of natural frequencies of a circular plate with Experiment and simulation..............................................................33
Table 2 Geometric dimensions and material properties of a rotating disk for uniform stress..............................................................33
Table 3 GA parameters in searching thickness distribution of rotating disks
for uniform stress...................................................34
Table 4 Thickness distribution of rotating disks of radius ratio 0.2 for uniform stress for different rotating speed.................................35
Table 5 Thickness distribution of rotating disks for uniform stress for different radii ratio at rotating speed 10000RPM............................36
Table 6 Comparisons of thickness distribution of rotating disks for uniform stress in different GA parameters. ( radii ratio= 0.2, 12000RPM)............37
Table 7 GA parameters in searching optimum Young’s modules distribution of rotating disk...............................................................38
Table 8 Optimum Young’s modules distribution of a disk for different radius ratio at rotating speed 12000 RPM (Unit :m )................................39
Table 9 Optimum Young’s modules distribution of a disk of radius ratio = 0.2 for different rotating speed (Unit :m ).....................................40
Table 10 Material properties and GA parameter in searching optimum thickness distribution for maximum critical speed. Radius ratio =0.33, 0.67, and 0.8.........................................................................41
Table 11 Optimum thickness distribution of rotating disks for different radius ratio in increasing critical speed (Unit: m)................................42
LIST OF FIGURES
Figure 2.1 A variable thickness annular plate................................4
Figure 3.1 The relation of encoding and decoding............................42
Figure 3.2 The element coding...............................................42
Figure 3.3 The arrangement of chromosome number.............................42
Figure 3.4 (a) Double point crossover process...............................43
Figure 3.4 (b) Uniform crossover process....................................43
Figure 3.5 Mutation process.................................................44
Figure 3.6 GA evolution process.............................................45
Figure 4.1 (a) Experiment devices...........................................46
Figure 4.1 (b) Experiment devices...........................................47
Figure 4.2 Dimensions of disk specimen......................................47
Figure 4.3 (a) Impulse chart................................................48
Figure 4.3 (b) Response chart...............................................48
Figure 4.4 Frequency response function......................................49
Figure 4.5 Thickness distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress...........................................51
Figure 4.6 Radial stress distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress.................................53
Figure 4.7 Circumferential stress distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress.............................55
Figure 4.8 The relation between fitness and GA iteration of rotating disks with radii ratio 0.2 for uniform stress..........................................57
Figure 4.9 Thickness distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................58
Figure 4.10 Radial stress distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................60
Figure 4.11 Circumferential stress distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................62
Figure 4.12 The relation between fitness and GA iteration of rotating disks with rotating speed 10000 RPM for uniform stress............................64
Figure 4.13 Young's Modules distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c)0.6........................65
Figure 4.14 Radial stress distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c) 0.6............................67
Figure 4.15 Circumferential stress distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c) 0.6......................69
Figure 4.16 The relation between fitness and GA iteration of rotating disks with rotating speed 10000RPM................................................71
Figure 4.17 Young’s modules distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM................................72
Figure 4.18 Radial stress distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM.....................................74
Figure 4.19 Circumferential stress distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM..........................76
Figure 4.20 The relation between fitness and GA iteration of rotating disks with radii ratio 0.2........................................................78
Figure 4.21 Thickness distribution of rotating disks for critical speed
(a) =0.33, (b) =0.67, (c) =0.8...........................................79
Figure 4.22 Radial stress distribution of rotating disks for critical speed
(a) =0.33, (b) =0.67, (c) =0.8...........................................81
Figure 4.23 Circumferential stress distribution of rotating disk for critical speed (a) =0.33, (b) =0.67, (c) =0.8.....................................83
Figure 4.24 The relation between fitness and GA iteration of rotating disks for critical speed..............................................................85
Figure 4.25 Thickness distribution of rotating disks with different GA
Parameters for uniform stress.....................................86
[1] G. G. Adams 1987 Int. J. Mech. Sci 129(8), 525-531. Critical Speeds for a Flexible Spinning Disk.
[2] S. Chonan 1987 Journal of Applied Mechanics 54, 967-968. On the Critical Speed of a Rotating Circular Plate.
[3] S. G. Hutton, S. Chonan and B. F. Lehmann 1987 Journal of Sound and Vibration 112(3), 527-539. Dynamic Response of a Guided Circular Saw”, Journal of Sound and Vibration
[4] S. K. Sinha 1988 ASME, Transactions, Journal of Vibrations, Acoustics, Stress, and Reliability in Design 110, 507-514. On Free Vibrations of a Thin Spinning Disk Stiffened with an Outer Reinforcing Ring.
[5] S. M. Yang 1993 Journal of vibrations and acoustics 115, 159-164. Vibration of a Spinning Annular Disk with Coupled Rigid-Body Motion.
[6] A. Phylactopoulos and G. G. Adams 1999 ASME, Journal of Vibration and Acoustics 121(7), 273-279. Transverse Vibration of a Rectangularly Orthotropic Spinning Disk, Part 1: Formulation and Free Vibration.
[7] U. S. Gupta and A. H. Ansari 1998 Journal of Sound and Vibration 213(3), 429-445. Free Vibration of Polar Orthotropic Circular Plates of Variable Thickness with Elastically Restrained Edge.
[8] George G. Adams 1987 Int. J. Mech. Sci. 29(8), 525-531. Critical Speed for a Flexible Spinning Disk.
[9] R. D. Mindlin 1951 ASME, Journal of Applied Mechanics 18, 1031-1036. Influence of Rotary Inertia and Shear in Flexural Motion of Isotropic, Elastic Plates.
[10] R. D. Mindlin and H. Dereciwicz 1954 ASME, Journal of Applied Phys-
ics 25, 1329-1332 Thickness-Shear and Flexural Vibration of a Circular Disk.
[11] R. D. Mindlin and H. Dereciwicz 1955 ASME, Journal of Applied Mechanics 22(1), 86-88. Axially Symmetric Flexural Vibrations of a Circular Disk.
[12] S. R. Soni and C. L. Amba-Rao 1975 Journal of Sound and Vibration 42, 57-63. On Radially Symmetric Vibration of Orthotropic Non-uniform Disks Including Shear Deformation.
[13] S. H. Jang 2001 Journal of Sound and Vibration 44(1), 30-36. Effects of Thickness Variation for the Dynamic Characteristics of Annular Plates Including the Shear deformation and Rotary Inertia.
[14] S. S. Rao and A. S. Prasad 1975 Journal of Sound and Vibration 42(3), 305-324. Vibration of Annular Plates Including the Effect of Rotatory Inertia and Transverse Shear Deformation.
[15] T. Irie, G. Yamada and S. Aomura, 1979 Journal of Sound and Vibration 66(2), 187-197. Free Vibration of a Mindlin Annular Plates of Varying Thickness.
[16] S. K. Sinha 1987 Journal of Acoustical Society of America 81(2), 357-369. Determination of Natural Frequencies of a Thick Spinning Annular Disk Using a Numerical Reyleigh-Ritz's Trial Function.
[17] V. Soamidas and N. Ganesan 1991 Journal of Sound and Vibration 147, 39-56. Vibration Analysis of Thick, Polar Orthotropic, Variable Thickness Annular Disks.
[18] P.A.A. Laura and R.H. Gutierrez 1991 Journal of Sound and Vibration 144,149-161 Free Vibration of a Solid Circular Plate of Linearly Varying Thickness Attached to Winlker Foundation
[19] K. M. Liew, Y. Xiang, C.M. Wang and S. Kitipornchai 1993 Computer Methods in Applied Mechanics and Engineering 110, 301-315. Flexural Vibration of Shear Deformable Circular and Annular Plates on Ring Supports.
[20] K. M. Liew, Y. Xiang, S. Kitipornchai and C.M. Wang 1994 Journal of Sound and Vibration 177(5), 689-707. Buckling and Vibration of Annular Mindlin Plates with Internal Concentric Ring Supports Subject to In-Plate Radial Pressure.
[21] T. Irie, G. Yamada and S. Aomura 1982 Journal of Applied Mechanics 49(9), 633-638. Natural Frequencies of Thick Annular Plate.
[22] U. Guven and A. Celik 2001 Mechanics Research Communications 28 (3), 271-276. On Transverse Vibrations of Functionally Graded Isotropic Linearly Elastic Rotating Solid Disks.
[23] C. Zhao, G. P. Steven and Y. M. Xie 1998 Computers & Structures 66, (2), 353-364. A Generalized Evolutionary Method for Natural Frequency Optimization of Membrane Vibration Problems in Finite Element Analysis.
[24] J. H. Choi, B. Y. Lee, and J. S. Han 2001 Computer Methods in Applied Mechanics and Engineering. 190, 6909-6926. Boundary Integral Method for Shape Optimization of Interface Problems and Application to Implant Design in Dentistry.
電子全文
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
壓電圓盤自然頻率值用於壓電材料參數之擷取
2.
非接觸式遺傳演算法樑裂縫偵測
3.
硬碟傳輸特性之研究
4.
掃描式白光干涉儀應用在量測薄膜之光學常數
5.
提升硬碟傳輸效率減振最佳化設計
6.
球柵陣列構裝元件於振動環境下之壽命計算及錫球尺寸最佳化設計
1.
夏良宙。1995。墊料或糞便潮濕和雞隻管理之關係。飼料營養雜誌 8:57-68。
2.
李淵百、陳明造。1984a。不同飼養管理方法下,台灣三種肉用雞屠體各部為比例與雞肉品質。國立中興大學農林學報。 33(2):39-48。
3.
林陽山、陳明造。1991。蛋白質營養與屠體品質。飼料營養雜誌 6:3-18。
4.
王勝德、林亮全、詹德芳。1997。臺灣土雞與白肉雞肌肉品質差異之研究。中國農業化學會誌 35(2):192-201。
5.
夏良宙。1996a。雞舍空氣中之不良因素及其影響。中國畜牧雜誌 28(4):89-96。
6.
夏良宙。1996b。空間行為和群的大小對雞隻成績之影響。飼料營養雜誌 3:37-54。
7.
郭猛德、魏恆巍、沈添富。1989。環境溫度對童子雞的蛋白質和能量需要量之影響。畜產研究 22(2):23-41。
1.
不同幾何形狀消音器及其內部吸音材料配置最佳化設計
2.
光碟機碟片間隙暨吸音泡棉對噪音影響之研究
3.
螺旋延伸管消音器之分析、設計與最佳化
4.
彈性撓度變化對於空間彎樑自然振動頻率之影響
5.
二足機器人之步行軌跡規劃
6.
以分散式主動視覺網路系統應用於輪型機器人之軌跡追蹤及避障
7.
整合Moldflow與基因演算法於射出成型模具冷卻水道位置最佳化
8.
利用類神經網路分析評估槍鑽深孔加工的切削力
9.
氣動消音器性能設計、分析與最佳化
10.
車輛多出口排氣消音器性能分析與最佳化設計
11.
練習用管樂器多腔消音性能分析與最佳化設計
12.
以微分演算法進行消音器最佳化分析
13.
多腔體槍枝消音器性能分析與最佳化設計
14.
直通型暨迴轉型消音系統之三維聲場分析與最佳化
15.
引擎排氣消音器性能評估與最佳化設計
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室