跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂哲匡
研究生(外文):Jer-Kuang Lu
論文名稱:任意變化厚度之旋轉圓盤振動分析與最佳形狀設計
論文名稱(外文):Vibration Analysis and Shape Optimization of Spinning Disks of Arbitrary Thickness
指導教授:張英俊張英俊引用關係
指導教授(外文):Ying -Chun Chang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:86
中文關鍵詞:振動等向性圓盤厚度遺傳演算法
外文關鍵詞:VibrationIsotropic annular plateThicknessGenetic algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:1
本文主要探討的部分為以薄板理論研究任意變化厚度之等向性圓盤的應力分布及臨界轉速。以不同之內外徑比及厚度比評估臨界轉速,結果顯示較大的內外徑比或厚度參數均能有效地增加在較低模態下的臨界轉速。
將遺傳演算法 (G.A. ) 與轉移矩陣法結合來分析要達到應力均勻分布和能提升旋轉圓盤之臨界轉速的形狀設計,數值分析結果得出應力均勻分布之例子顯示內外徑比下降則厚度分布變化劇烈。在高轉速的圓盤之厚度分布會比低轉速的分布較陡峭,高轉速的內徑之厚度會較低轉速的高。
In this study, the stress distribution and critical speed of rotating isotropic disk with arbitrary thickness are investigated based on the thin plate theory. The critical speed is evaluated for different values of radius ratio and thickness ratio. The results show that increasing the values of ratio of radii and thickness parameter can effectively increase the critical speed of the plate for a lower order mode.
By incorporating Genetic algorithm (G.A ) method and transfer matrix
analysis, the shape design of rotating disks for uniform stress distribution
and enhancing critical speed has also been implemended. Numerical
results show that for the case of uniform stress, the thickness distribution of
the disk shows larger variation as the radius ratio is decreased.
The thickness distribution of the disk with a higher rotating speed is more precipitous than those at lower rotating speed. The thickness of inner edge for the disk at high rotating speed is thicker than those at low rotating speed.
CONTENTS
Chinese abstract..................................................I
English abstract.................................................II
Acknowledgements................................................III
Contents.........................................................IV
List of tables....................................................V
List of figures.................................................VII
Nomencalture.....................................................XI
CHAPTER 1 INTRODUCTION............................................1
CHAPTER 2 THEORETICAL ANALYSIS....................................4
2.1 Stress analysis...............................................4
2.2 Transfer matrix..............................................11
CHAPTER 3 GENETIC ALOGRITHM......................................14
CHAPTER 4 RESULTS AND DISCUSSION.................................18
4.1 Experiment of circular plate for natural frequency...........19
4.2 Shape design of disks for uniform stress.....................20
4.3 Optimum Young’s modules distribution........................23
4.4 Shape design of disks for critical speed.....................25
CHAPTER 5 CONCLUSIONS............................................26
REFERENCES.......................................................29

LIST OF TABLES

Table 1 Comparison of natural frequencies of a circular plate with Experiment and simulation..............................................................33
Table 2 Geometric dimensions and material properties of a rotating disk for uniform stress..............................................................33
Table 3 GA parameters in searching thickness distribution of rotating disks
for uniform stress...................................................34
Table 4 Thickness distribution of rotating disks of radius ratio 0.2 for uniform stress for different rotating speed.................................35
Table 5 Thickness distribution of rotating disks for uniform stress for different radii ratio at rotating speed 10000RPM............................36
Table 6 Comparisons of thickness distribution of rotating disks for uniform stress in different GA parameters. ( radii ratio= 0.2, 12000RPM)............37
Table 7 GA parameters in searching optimum Young’s modules distribution of rotating disk...............................................................38
Table 8 Optimum Young’s modules distribution of a disk for different radius ratio at rotating speed 12000 RPM (Unit :m )................................39
Table 9 Optimum Young’s modules distribution of a disk of radius ratio = 0.2 for different rotating speed (Unit :m ).....................................40
Table 10 Material properties and GA parameter in searching optimum thickness distribution for maximum critical speed. Radius ratio =0.33, 0.67, and 0.8.........................................................................41
Table 11 Optimum thickness distribution of rotating disks for different radius ratio in increasing critical speed (Unit: m)................................42


LIST OF FIGURES
Figure 2.1 A variable thickness annular plate................................4
Figure 3.1 The relation of encoding and decoding............................42
Figure 3.2 The element coding...............................................42
Figure 3.3 The arrangement of chromosome number.............................42
Figure 3.4 (a) Double point crossover process...............................43
Figure 3.4 (b) Uniform crossover process....................................43
Figure 3.5 Mutation process.................................................44
Figure 3.6 GA evolution process.............................................45
Figure 4.1 (a) Experiment devices...........................................46
Figure 4.1 (b) Experiment devices...........................................47
Figure 4.2 Dimensions of disk specimen......................................47
Figure 4.3 (a) Impulse chart................................................48
Figure 4.3 (b) Response chart...............................................48
Figure 4.4 Frequency response function......................................49
Figure 4.5 Thickness distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress...........................................51
Figure 4.6 Radial stress distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress.................................53
Figure 4.7 Circumferential stress distribution of a disk of radius ratio 0.2 for different rotating speed for uniform stress.............................55
Figure 4.8 The relation between fitness and GA iteration of rotating disks with radii ratio 0.2 for uniform stress..........................................57
Figure 4.9 Thickness distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................58
Figure 4.10 Radial stress distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................60
Figure 4.11 Circumferential stress distribution of rotating disks with rotating speed 10000RPM for uniform stress (a)radii ratio =0.2, (b) 0.4, (c) 0.6.........................................................................62
Figure 4.12 The relation between fitness and GA iteration of rotating disks with rotating speed 10000 RPM for uniform stress............................64
Figure 4.13 Young's Modules distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c)0.6........................65
Figure 4.14 Radial stress distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c) 0.6............................67
Figure 4.15 Circumferential stress distribution of rotating disks with rotating speed 12000RPM. (a)radii ratio =0.2, (b) 0.4, (c) 0.6......................69
Figure 4.16 The relation between fitness and GA iteration of rotating disks with rotating speed 10000RPM................................................71
Figure 4.17 Young’s modules distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM................................72
Figure 4.18 Radial stress distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM.....................................74
Figure 4.19 Circumferential stress distribution of rotating disks with radii ratio 0.2. (a) 12000RPM, (b) 10000RPM, (c) 8000RPM..........................76
Figure 4.20 The relation between fitness and GA iteration of rotating disks with radii ratio 0.2........................................................78
Figure 4.21 Thickness distribution of rotating disks for critical speed
(a) =0.33, (b) =0.67, (c) =0.8...........................................79
Figure 4.22 Radial stress distribution of rotating disks for critical speed
(a) =0.33, (b) =0.67, (c) =0.8...........................................81
Figure 4.23 Circumferential stress distribution of rotating disk for critical speed (a) =0.33, (b) =0.67, (c) =0.8.....................................83
Figure 4.24 The relation between fitness and GA iteration of rotating disks for critical speed..............................................................85
Figure 4.25 Thickness distribution of rotating disks with different GA
Parameters for uniform stress.....................................86
[1] G. G. Adams 1987 Int. J. Mech. Sci 129(8), 525-531. Critical Speeds for a Flexible Spinning Disk.
[2] S. Chonan 1987 Journal of Applied Mechanics 54, 967-968. On the Critical Speed of a Rotating Circular Plate.
[3] S. G. Hutton, S. Chonan and B. F. Lehmann 1987 Journal of Sound and Vibration 112(3), 527-539. Dynamic Response of a Guided Circular Saw”, Journal of Sound and Vibration
[4] S. K. Sinha 1988 ASME, Transactions, Journal of Vibrations, Acoustics, Stress, and Reliability in Design 110, 507-514. On Free Vibrations of a Thin Spinning Disk Stiffened with an Outer Reinforcing Ring.
[5] S. M. Yang 1993 Journal of vibrations and acoustics 115, 159-164. Vibration of a Spinning Annular Disk with Coupled Rigid-Body Motion.
[6] A. Phylactopoulos and G. G. Adams 1999 ASME, Journal of Vibration and Acoustics 121(7), 273-279. Transverse Vibration of a Rectangularly Orthotropic Spinning Disk, Part 1: Formulation and Free Vibration.
[7] U. S. Gupta and A. H. Ansari 1998 Journal of Sound and Vibration 213(3), 429-445. Free Vibration of Polar Orthotropic Circular Plates of Variable Thickness with Elastically Restrained Edge.
[8] George G. Adams 1987 Int. J. Mech. Sci. 29(8), 525-531. Critical Speed for a Flexible Spinning Disk.

[9] R. D. Mindlin 1951 ASME, Journal of Applied Mechanics 18, 1031-1036. Influence of Rotary Inertia and Shear in Flexural Motion of Isotropic, Elastic Plates.
[10] R. D. Mindlin and H. Dereciwicz 1954 ASME, Journal of Applied Phys-
ics 25, 1329-1332 Thickness-Shear and Flexural Vibration of a Circular Disk.
[11] R. D. Mindlin and H. Dereciwicz 1955 ASME, Journal of Applied Mechanics 22(1), 86-88. Axially Symmetric Flexural Vibrations of a Circular Disk.
[12] S. R. Soni and C. L. Amba-Rao 1975 Journal of Sound and Vibration 42, 57-63. On Radially Symmetric Vibration of Orthotropic Non-uniform Disks Including Shear Deformation.
[13] S. H. Jang 2001 Journal of Sound and Vibration 44(1), 30-36. Effects of Thickness Variation for the Dynamic Characteristics of Annular Plates Including the Shear deformation and Rotary Inertia.
[14] S. S. Rao and A. S. Prasad 1975 Journal of Sound and Vibration 42(3), 305-324. Vibration of Annular Plates Including the Effect of Rotatory Inertia and Transverse Shear Deformation.
[15] T. Irie, G. Yamada and S. Aomura, 1979 Journal of Sound and Vibration 66(2), 187-197. Free Vibration of a Mindlin Annular Plates of Varying Thickness.

[16] S. K. Sinha 1987 Journal of Acoustical Society of America 81(2), 357-369. Determination of Natural Frequencies of a Thick Spinning Annular Disk Using a Numerical Reyleigh-Ritz's Trial Function.
[17] V. Soamidas and N. Ganesan 1991 Journal of Sound and Vibration 147, 39-56. Vibration Analysis of Thick, Polar Orthotropic, Variable Thickness Annular Disks.
[18] P.A.A. Laura and R.H. Gutierrez 1991 Journal of Sound and Vibration 144,149-161 Free Vibration of a Solid Circular Plate of Linearly Varying Thickness Attached to Winlker Foundation
[19] K. M. Liew, Y. Xiang, C.M. Wang and S. Kitipornchai 1993 Computer Methods in Applied Mechanics and Engineering 110, 301-315. Flexural Vibration of Shear Deformable Circular and Annular Plates on Ring Supports.
[20] K. M. Liew, Y. Xiang, S. Kitipornchai and C.M. Wang 1994 Journal of Sound and Vibration 177(5), 689-707. Buckling and Vibration of Annular Mindlin Plates with Internal Concentric Ring Supports Subject to In-Plate Radial Pressure.
[21] T. Irie, G. Yamada and S. Aomura 1982 Journal of Applied Mechanics 49(9), 633-638. Natural Frequencies of Thick Annular Plate.

[22] U. Guven and A. Celik 2001 Mechanics Research Communications 28 (3), 271-276. On Transverse Vibrations of Functionally Graded Isotropic Linearly Elastic Rotating Solid Disks.
[23] C. Zhao, G. P. Steven and Y. M. Xie 1998 Computers & Structures 66, (2), 353-364. A Generalized Evolutionary Method for Natural Frequency Optimization of Membrane Vibration Problems in Finite Element Analysis.

[24] J. H. Choi, B. Y. Lee, and J. S. Han 2001 Computer Methods in Applied Mechanics and Engineering. 190, 6909-6926. Boundary Integral Method for Shape Optimization of Interface Problems and Application to Implant Design in Dentistry.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top