跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余文程
研究生(外文):Wen-cheng Yu
論文名稱:介電泳生物晶片應用於細胞裂解研究
論文名稱(外文):The Application of Dielectrophoresis Biochip on Cell Lysis
指導教授:魏哲弘
指導教授(外文):Che-hung Wei
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:93
中文關鍵詞:裂解酵母細胞白血球實驗室晶片
外文關鍵詞:lysisyeast cellshuman white celllab-on-a-chip
相關次數:
  • 被引用被引用:3
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是研究將電極式的微晶片應用於細胞的裂解(lysis)與操控上。此技術相較於既往的大型機台的電穿孔技術而言,有許多的好處,其不僅可以增快裂解的效率、較容易擷取出細胞內物質做分析且其製造成本低廉,另外,對於無電極式晶片用於細胞的操作也有初步的研究。本研究計畫以康寧1737的玻璃為底材,在其上做微影蝕刻,分別蝕刻出電極式尖端型與無電極式漏斗型圖樣,其電極晶片電極間距約為50 m,流道約為250 m;無電極式則其流道入口寬度與壓縮尖端口比為500左右,而流道深度大約為30 m。實驗中所採用的細胞為酵母細胞(yeast)與人類的白血球細胞,電流源為直流脈衝的方式(亦有採用交流電源控制介電泳動),藉由控制電壓與頻率去操控與裂解細胞。同時將採用商用軟體Femlab與CFDRC做為電場的模擬分析,可瞭解電場分佈情形,進而與實驗結果比較。此技術將可以結合其他功能如PCR等成為一完整晶片,對於實驗室晶片(lab-on-a-chip)的研究,將具有莫大的助益。
This thesis studies cell lysis and dielectrophoresis cell manipulation with biochip. Compared to conventional technology, the MEMS based biochip technique has the advantages like the better efficiency, lower assay consumption, less power and easy manipulation. For cell lysis, the biochip was fabrication by using Corning 1737 as the substrate and the electrode was deposited by evaporation and patterned by lithography. The microchannels were made on PDMS by soft lithography. Two cells (yeast cell and human white cell) were used to for cell lysis. The minimum cell lysis operation condition is investigated by numerical analysis with commercial software Femlab. The simulation results agree with the experimental results very well. Different operation parameters like electrode size, applied voltage were applied to study the efficiency. The results show that when the size of the electrode increases, the efficiency of cell lysis increases. On the other hand, the cell lysis efficiency is very sensitive to the magnitude of the applied voltage and the length of the impulse. For lower applied voltage, the longer impulse will cause cell lysis while higher applied voltage, the impulse duration can be shorter. For electrodeless dielectrophoresis biochip, the yeast cell moves along the direction of the electric field. The speed of the cell movement increases with increasing applied voltage. The nature of the cell movement needs further investigation.
CHAPTER
I Introduction………………………………..……………………………...1
1.1 Background.............................................................................................1
1.2 Literature Review....................................................................................4
1.3 Motivation and Goals..............................................................................12
II Dielectrophoresis and Lysing Theories...........................................................14
2.1 Dielectrophresis Theory...........................................................................15
2.1.1 Introduction of Electric Dipole..........................................................15
2.1.2 Dielectrophoretic Force.................................................................19
2.2 Cells Lysing Theory................................................................................21
2.2.1 Breakdown Voltage.........................................................................21
2.2.2 Cells Lysing..................................................................................22
2.2.3 The Relationship of Electric Field Strength and Pulse Duration..............26
2.3 Electrodeless Dielectrophoresis Theory.....................................................28
III Chip Design and Fabrication.........................................................................31
3.1 Chip Design...........................................................................................33
3.2 Electric Field Simulation.........................................................................35
3.2.1 The Electric Field Simulation of Electrode Chip..................................35
3.2.2 The Electric Field Simulation of Electrodeless Chip.............................41
3.3 Electrode Fabrication.............................................................................43
3.3.1 Chip Cleaning...............................................................................43
3.3.2 Metal Deposition............................................................................45
3.3.3 Cr Sputtering.................................................................................46
3.4 Micro Channel Fabrication......................................................................49
3.4.1 Channel of Glass Substrate..............................................................49
3.4.2 Channel of PDMS Substrate…………………..…………………...50
3.5 Chip Bonding………….........................................................................53
3.6 Cells and Conduct solutions………………….…………...…………….54
3.7 Chip Check……………………………...…………………..………..55
3.8 Experiment Deployment ...……………………………...……………..57
IV Results and Discussion…..……………...…………….…………………...63
4.1 Cell Lysis with Electrode…………………..………………...…………63
4.1.1 Yeast Cells Controlling and Lysing…………………….…………...63
4.1.2 Human White Cell Lysing……………...……….…………………70
4.1.3 Human White Cell Lysing Rate…………….…...…………….…...79
4.2 Cell Lysis without Electrode……………………………….……………83
V Conclusions and Future Work………………………….………………..…..86
5.1 Conclusions……………………………………………...……………86
5.2 Futrue Work……………………………………….………………….88
Reference……………………………………………………………………..90
[1] M.P. Hughes, Nanoelectromechanics in Engineering and Biology. Boca Raton,
FL: CRC Press, 2003.
[2] http://www.lab-on-a-chip.com/home/index.aspx
[3] R. Pethig, “Dielectrophoresis: Using inhomogeneous ac electrical fields to separate and manipulate cells,” Crit. Rev. Biotechnol., vol. 16, pp. 331–348, 1996.
[4] H. Morgan, M.P. Hughes, and N.G. Green, “Separation of submicron bioparticles
by dielectrophoresis,” Biophys. J., vol. 77, pp. 516–525, 1999.
[5] F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, and P. Gascoyne,
“Separation of human breast-cancer cells from blood by differential dielectric
affinity,” Proc. Nat. Acad. Sci. USA, vol. 92, pp. 860–864, 1995.
[6] J. Yang, Y. Huang, X.B. Wang, F.F. Becker, and P. Gascoyne, “Cell separation
on microfabricated electrodes using dielectrophoretic/gravitational field flow
fractionation,” Anal. Chem., vol. 71, pp. 911–918, 1999.
[7] R. Krupke, F. Hennrich, H.v. Lohneysen, and M.M. Kappes, “Separation of
metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301,
pp.344–347, 2003.
[8] HA Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” J. Appl. Phys. 22, 869 ,1951.
[9] Y.Huang, R.Pethig“Electrode design for negative dielectrophoresis,” Meas. Sci. Technol. 2, pp.1142–1146, 1991.
[10] U. Zimmermann, “Electrical breakdown, electropermeabilization and electrofusion,” Rev. Physiol. Biochem. Pharmacol, 105, pp. 175-256, 1986.
[11] T. Grahl , H. Ma rkl, “Killing of microorganisms by pulsed electric fields,” Appl Microbiol Biotechnol 45, pp. 148-157, 1996.
[12] G.L. Prasanna, T. Panda, “Electroporation: basic principles, practical considerations and applications in molecular biology,”Bioprocess Engineering 16, pp. 261-264, 1997
[13] S. W. Lee, Y.C. Tai, “A micro cell lysis device,”Sensors and Actuators A, Vol 73, no. 1-2, pp. 74-79, 1998.
[14] Y. Huang, B. Rubinsky, “Microfabricated electroporation chip for single cell membrane permeabilization,”Sensors and Actuators A,Vol 89, pp. 242-249, 2001.
[15] Eric B. Cummings, Anup K. Singh, “Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results,”Anal. Chem. 75, pp. 4724-4731, 2003
[16] Chia-Fu Chou, Frederic Zenhausern, “Electrodeless dielectrophoresis for micro
total analysis systems”,IEEE engineering in medicine and biology magazine,
November/December 2003.
[17] Hang Lu, Martin A. Schmidt, Klavs F. Jensen, “A microfluidic electroporation device for cell lysis,”Lab on a chip, 5, pp. 23-29, 2005.
[18] Petra Mela, Albert van den Berg ,Yolanda Fintschenko, “The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices,”Electrophoresis ,26, 2005.
[19] T. E. Creighton, “Protein Function: a Practical Approach, Oxford University Press,” New York, vol. 175 , 1997.
[20] D. Di Carlo, K. H. Jeong, L. P. Lee, Lab Chip , 3, 4, pp.287–291, 2003.
[21] U. Zimmermann, G. Pilwat, F. Riemann, “Dielectric breakdown of cell membranes,”
Biophysical. J., 14, pp.881-899, 1974.
[22] E. Jeltsch ,U. Zimmermann, “Particles in a homogeneous electrical field: a model for
the electrical breakdown of living cells in a coulter counter,”Bioelectrochem.J., 6, pp. 349, 1979.
[23] E. Neumann, A.E. Sowers, C.A. Jordan(Eds), “Electroporation and Electrofusion in Cell Biology,”Plenum, New York, pp. 67-68, 1989.
[24] N.G. Green, A. Ramos, H. Morgan, “Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method,” Journal of Electrostatics, 56, pp. 235–254, 2002.
[25] D.A.Stenger, S.W. Hui, “Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes,”J. Membr. Biol., 93, pp. 43-53, 1986.
[26] U. Zimmermann, “Electric field-mediated fusion and related electrical phenomena,”Biochim. Biophys. , Acta 694, pp. 227-277,1982.
[27] V.S. Markin, M.M. Kozlov, V.L. Borovjagin, “On the theory of membrane fusion:The stalk mechanism,”J. Physiol. Biophys., 5, pp. 361-377,1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top