|
REFERRENCES [1]S. Reukunta and D. Wells, “Optical Memory and Blue Laser,” IEEE Potentials, pp. 14-18, Oct/Nov 1994. [2]T. I. Lasko, V. Valimaki and M. Karjalainen, “Splitting the Unit Delay: Tools For Fractional Delay Filter Design,” IEEE Signal Processing Magazine, vol.13, no.1, pp.30-60, Jan. 1996. [3]S. Janati, “Bandpass Delta-Sigma Analog to Digital Conversion,” IEEE Trans. on Circuits and Systems, vol. 38, no. 11, pp.1406-1409, Oct., 1991. [4]F.W. Signor and W. M. Snelgrove, “Switched-Capacitor Bandpass Delta-Sigma A/D Modulation at 10.7MHZ,” IEEE Journal of Solid-State Circuits, vol. 30, no.3, pp.184-192, Mar.1995. [5]G.. Oetken, “A New Approach for the Design of Digital Interpolating Filters,” IEEE Trans, Acoust. Speech Signal Processing, vol.27, no.6, pp.637-643, Dec. 1979. [6]S. Minicha, S. C. Dutta Roy and B. Kumar, “A Note on the FIR Approximation of a Fractional Sample Delay,” Int. J. Circuit Theory and Appl., vol.21,no 3,pp. 265-274, May-Jun. 1993. [7]P. Kootsookos and R.C. Williamson, “FIR Approximation of Fractional Sample Delay Systems,” IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Processing, vol. 43, no.2, Feb. 1996. [8]T. W. Parks and C.S. Burrus, Digital Filter Design, New York: John Wiley & Sons, 1987. [9]S. Kay, “Some Results in Linear Interpolation Theory,” IEEE Trans. Acoust. Speech Signal Processing, vol.31, pp.746-749, June 1983. [10]T. W. Parks and J. H. McClellan, “A Program for the Design of Linear Phase Finite Impulse Response Digital Filters,” IEEE Trans. Audio Electroacous., vol.AU-20, pp.195-199, Aug.1972. [11]L. J. Karam and J. H. McClellan, “Complex Chebyshev Approximation for FIR Filter Design,” IEEE Trans. Circuits Syst.- II: Analog and Digital Signal Processing,vol.42,no.3,pp.207-216,Mar.1995. [12]J. P. Thiran, “Equal-Ripple Delay Recursive Digital Filters,” IEEE Trans. Circuit Theory, vol.34, no.1, pp. 11-23, Jan. 1987. [13]G. A. Merchant and T. W. Parks, “Efficient Solution of Toeplitz-Plus-Hankel Coefficient Matrix System of Equation,” IEEE Trans. Acoust. Speech Signal Processing, vol. 30, pp.40-44, Feb.1982. [14]M. Lang and T.I. Lakso, “Simple and Robust Method for the Design of All-pass Filters Using Least-Squares Phase Error Criterion,” IEEE Trans. Circuit Syst.-II: Analog and Digital Signal Processing, vol. 41, no.1,pp. 40-48, Jan, 1994. [15]T. Q. Nguyen, T. I. Lakso, and R. D. Koilpillai , “Eigenfilter Approach for the Design of All-pass Filter Approximating a Given Phase Response,” IEEE Trans. Signal Processing, vol. 42, no. 9, pp. 2257-2263, Sept. 1994. [16]Y. C. Lim, J.H. Chan, and R.H. Yang, “A Weighted Least-Squares Algorithm for Quasi-Equiripple FIR and IIR Digital Filter Design ,” IEEE Trans. Signal Processing, vol.40, no. 3, pp 551-558, Mar. 1992. [17]A. Alkhairy., “LS-Minimax FIR Filter Design,” IEEE Trans. Circuits and Sys. vol. 2, no 2, pp.637 - 639, Aug. 1996. [18]A. Oppennheim and R. Schafer, Discrete Time Processing, Prentice-Hall, 1989 [19]W. Bennett, “Spectra of Quantized Signals,” Bell System Technical Journal, pp.446-472, July 1948. [20]B. Leung, “Theory of Sigma-Delta Analog to Digital Converter,” IEEE International Symposium on Circuits and Systems Tutorial, pp. 196-223, 1994 [21]S. R. Norsworthy, R. Schreier and G. C. Temes, “Delta-Sigma Data Converters: Theory, Design and Simulation,” IEEE Press, Ch. 3, Oct., 1996. [22]S. A. Jantzi, M. Sneigrove and P.F. Ferguson, “A Fourth-Order Band-Pass Sigma-Delta Modulator.” IEEE Journal of Solid-State Circuits, vol. 28, no. 3, pp. 282-291, Mar. 1993. [23]J.G. Proakis and D. G. Manolakis., Digital Signal Processing: Principles, Algorithms and Applications, Macmillan Publishing Company, pp.352-358, 1992 [24]S. C. Pei, and C. C. Tseng, “A Comb Filter Design Using Fractional-Sample Delay,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no.6, pp.649-653, May. 1998. [25]J. Candy and G. Temes, “Oversampling Methods for A/D and D/A Conversion in Oversampling Delta-Sigma Data Converters,” IEEE Press, pp. 1-25, Mar., 1992. [26]R. Gray, “Quantization Noise Spectra,” IEEE Transactions on Information Theory, pp. 1220-1244, Nov., 1990. [27]W. Black and D. Hodges, “Time Interleaved Converter Arrays,” IEEE Journal of Solid State Circuit, pp. 1022-1029, Dec., 1980. [28]A. Petraglia and S. Mitra, “High Speed A/D Conversion Using QMF Banks,” IEEE International Symposium on Circuit and Systems, pp. 2797-2800, May, 1990. [29]R. Khoini-Poorfard, L.B.Lim, D.A. Johns, “Time-interleaved oversampling A/D converters: theory and practice,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions, vol. 44, Issue 8, pp.634-645, Aug. 1997. [30]P. P. Vaidyanathan, Multi-Rate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall, 1993. [31]F. Lou; U. Seng-Pan, and R. P. Martins, “N-Path Multirate Sigma-Delta Modulator for High-Frequency Applications,” Electronics vol.1,Issue 15-18, pp.315-318, Sept. 2002. [32]R. Khoini-Poorfard, and D.A. Johns, “Mismatch Effects in Time-Interleaved Oversampling Converters,” IEEE Int. Symp. Circuits and Systems, vol. 5, pp. 429-432, May, 1994. [33]Al-Janabi, M.; Kale, I.; Morling, R.C.S.; “Increasing the Variability of Centre Frequency Locations in Multiple-Band Sigma-Delta Modulators via the Use of Fractional Delay Filters, Advanced A/D and D/A Conversion Technique and Their Applications,” Third International Conference, Conf. Publ. no. 466, pp.30-33, Jul. 1999. [34]F. Colodro, A. Torralba, A.P. Vegaleal, L.G. Franquelo, “Multirate-Multibit Sigma-Delta Modulators,” Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. vol. 2, pp. 21-24, May 2000.
|