跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 02:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝其緯
研究生(外文):Chi-Wei Shieh
論文名稱:橢圓曲線密碼處理器之有效率設計
論文名稱(外文):AN EFFICIENT DESIGN OF ELLIPTIC CURVE CRYPTOGRAPHY PROCESSOR
指導教授:汪順祥
指導教授(外文):Shuenn-Shyang Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:32
中文關鍵詞:橢圓曲線密碼
外文關鍵詞:ELLIPTIC CURVE CRYPTOGRAPHY
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來無線通訊以及網際網路的快速且蓬勃的發展,使得通訊安全顯得格外重要。如果無法提供一個安全的通訊環境,則無線通訊以及網際網路的應用,如:網路購物、網路銀行,將會受到限制。在此篇論文中,我們提出一個修改過的快速不相鄰表示轉換法(on-the-fly non- adjacent-form conversion),以及在2163有限場下的一個較有效率的橢圓曲線乘法處理器。此處理器的運算時間為155265個計數器時間,且可以抵抗時間攻擊法(timing attack)。
In the recent, wireless communication and global network bave been broadly developed, so the security of communication is very important. If there is no secure environment, the applications, like E-commerce system and Internet Commercial Bank, will be limited. In this thesis, we devise a modified on-the-fly non-adjacent-form (NAF) conversion without look-up-table and propose an efficient Elliptic curve cryptography (ECC) processor over GF(2163) which is resistant to timing attacks. It is shown that the delay of our processor is 155265 clock cycles For the case of GF(2163).
ACKNOWLEDGEMENT (in Chinese) I
ABSTRACT (in Chinese) II
ABSTRACT (in Chinese) III
CONTENTS IV
LIST OF TABLE VI
LIST OF FIGURE VII
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Mathematical Background 2
1.2.1 Finite field 2
1.2.2 The finite field GF(p) 2
1.2.3 The finite field GF(2m) 3
1.3 Elliptic Curves 5
1.3.1 Elliptic curves over GF(p) 8
1.3.2 Elliptic curves over GF(2m) 9
CHAPTER 2 ECC PUBLIC KEY CRYPTOGRAPHY 11
CHAPTER 3 POINT MULTIPLICATION ALGORITHM 13
3.1 Hardware Costs Issue 13
3.2 Point Multiplication Algorithm Issue 14
3.3 Security Issue 15
CHAPTER 4 PROPOSED ARCHITECTURE 17
4.1 Modified Schedule Architecture 17
4.2 Modified On-the-Fly Conversion 24
4.3 ECC Processor Design 27
4.4 Performance Analysis 29
CHAPTER 5 CONCLUDION 30
REFERENCES 31
[1]W. Stallings, Cryptography and Network Security: Principles and Practice, 1999.
[2]A. Hodjat, D. D. Hwang, I. Verbauwhede “A scalable and high performance elliptic curve processor with resistance to timing attacks,” ITCC. vol. 1, pp. 538 – 543, April 2005.
[3]IEEE P1363/D13, Standard Specification for Public-key Cryptography, November 1999.
[4]Certicom Research, Standard for Efficient Cryptography SEC1: Elliptic Curve Cryptography, Certicom corp., 2000.
[5]A. Satoh and K. Takan, “A Scalable Dual-Field Elliptic Curve Cryptographic Processor,” IEEE Transactions on Computers, vol 52, pp. 449 – 460, April 2003.
[6]J. Lopez and R. Dahab, “Improved Algorithms for Elliptic Curve Arithmetic in GF(2n),” Lecture Notes In Computer Science, vol. 1556, pp. 201 – 212, 1998.
[7]N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, pp. 203-209, 1987.
[8]V. Miller, “Uses of elliptic curves in cryptography,” Advances in Cryptology -- CRYPTO '85, Lecture Notes in Computer Science, pp. 417-426, 1986.
[9]N. Koblitz., A Course in Number Theory and Cryptography, Springer-Verlag, New York, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top