跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/15 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邢榮慶
研究生(外文):Hsing-Jung Ching
論文名稱:氨濃度對米根黴生產L型乳酸的影響
論文名稱(外文):Influence of Ammoniacal Concentration on L-Lactic Acid Production by Culture of Rhizopus oryzae
指導教授:許垤棊許垤棊引用關係
指導教授(外文):Prof. Dey-Chyi Sheu
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:61
中文關鍵詞:生物反應槽黴菌形態乳酸的生產米根黴
外文關鍵詞:lactic acid productionfungal morphologybioreactorRhizopus oryzae
相關次數:
  • 被引用被引用:2
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用攪拌式生物反應槽培養菌絲狀的米根黴,以葡萄糖為碳源,開發一種提高L型乳酸產量的醱酵方法。本文對於醱酵過程所控制的酸鹼度以及起始添加的硫銨濃度對於L型乳酸產量的影響,做詳細的研究。最適的條件是pH 4.3–4.4以及每升4克的硫銨添加量,醱酵進行36小時後,得到L型乳酸的最終濃度是每升104克,葡萄糖轉換成乳酸的轉化率是87%。重複批次醱酵,用每升3克的硫銨為氮源,最初的4槽得到L型乳酸的最終濃度是每升109克,葡萄糖轉換成乳酸的轉化率高達91%,每槽醱酵完成的時間是28小時。
A fermentation process for enhanced production of L(+)-lactic acid was developed. Rhizopus oryzae cultured with glucose as carbon source exhibited floc morphology in a stirred tank bioreactor. The effects of fermentation pH as well as the initial concentration of ammonium sulfate added to the culture medium on LA production were investigated. Optimal production of LA was achieved in the condition of pH 4.3 – 4.4 with initial concentration of AS at 4 g/L after 36 h of fermentation. The final concentration of LA was 104 g/L with a yield of 87%. Furthermore, the average concentration and the yield of lactic acid in the following four cycles of the 28-h repeated batch fermentation were up to 109 g/L and 91%, respectively, using 3 g/L of ammonium sulfate as nitrogen source.
TABLES OF CONTENTS

CHINESE ABSTRACT……….…………….…………………………I
ENGLISH ABSTRACT…….…………...............…………………….II
ACKNOWLEDGEMENTS…..……..………………..………………III
TABLE OF CONTENTS…………......…….…………..…………….IV
LIST OF FIGURES………………….......………………..………… VIII
LIST OF TABLES……………….......…………………….………….X
CHAPTER
I Introduction.………………………….................…………….1
1.1 Lactic acid………………..…………..…………….…1
1.2 L-lactic acid………….…………….………………….13
1.3 Poly-L-lactic acid ( PLLA )..………..…........………...13
1.4 Rhizopus oryzae……………………………………….13
II Theoretical Analysis…….…………….……..……………….25 2.1 Materials……. …..…………….…………..………….25
2.2 Culture of R. oryzae.…………...……………………..27
2.3 Analytical Methods…..……..…….…..……..………..35
2.4 Monitoring and control of fermentation………………37
III Results and Discussion…..…............................…………….43
3.1 Effect of pH………………………………………….43
3.2 Effect of ammonium sulfate concentration………….46
3.3 Repeated batch fermentation………………………..51
IV Conclusions……….........................................................…..53
REFERENCES…........…………………….…………………...………54
Anders, R. J. J. G. Cervency, and A. L. Milkowski, (Dec. 19, 1989). U.S.Patent 4,888,191, ( to Oscar Mayer Foods Corp., U.S.A.).
Anders, R. J. J. G. Cervency, and A. L. Milkowski, (May. 21, 1991). U.S.Patent 5,017,391, ( to Oscar Mayer Foods Corp., U.S.A.).
Benthin, S. and J. Villadsen, 1995. Production of optically pure D− lactate by Lactobacillus bulgaricus and purification by crystallization and liquid/liquid extraction. Appl. Microbiol. Biotechnol. 42: 826−829.
Bouchara, J. P., N.A. Oumeziane, J. C. Lissitzky, G. Larcher, G. Tronchin, and D. Chabasse, 1996. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to the extracellular matrix components. Eur. J. Cell Bio.70:76−83.
Datta, R., S. P. Tsai, P. Bonsignore, S. H. Moon, and J. R. Frank, 1995. Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbial. Rev. 16: 221-231.
Dong, X. Y., S. Bai, and Y. Sun, 1996. Production of L (+)−lactic acid with Rhizopus oryzae immobilized in polyurethane foam cubes. Biotechnol. Lett. 18:225−228.
Efremenko E. N., O. V. Spiricheva, D. V. Veremeenko, A. V. Baibak and V. I. Lozinsky, 2006. L(+)-Lactic acid production using poly(vinyl alcohol)-cryogel-entrapped Rhizopus oryzae fungal cells. J. Chem. Technol. Biotechnol. 81:519–522.
Espinel-ingroff, A., L. A. Oakley, and T. M. Kerkering, 1987.Opportunistic zygomycotic infections. Mycopathologia .97:33−41.
Frye, C. B. and D. J. Reinhardt, 1993. Characterization of groups of the Zygomycete genus Rhizopus. Mycopathologia.124:139−147.
Hang, Y.D., 1989. Direct fermentation of corn to L (+)− lactic acid by Rhizopus oryzae . Biotechnol. lette.11:229−300.
Hang, YD. and W. Suntornsuk, 1994. Strain improvement of Rhizopus oryzae for production of L (+)−lactic acid and glucoamylase. Lett. Appl. Microbiol. 19:249-252.
Heights, A., 1989. Lactic Acid and Lactates. Product Bulletin, Purac. Inc., IL.
Hesseltine, C.W., M. Smith, B. Bradle, and K.S. Djien, 1963. Investigations of tempeh, an Indonesian food. Dev. Ind. Microbiol. 4:275−287.
Holten, C.H., A. Muller, D. Rehbinder. 1971. Lactic acid, Verlag Chemie, Internation Research Association, Copenhagen, Denmark.
Huang, M.Y. and H.R. Bungay, 1973. Microprobe measurements of oxygen concentration in mycelial pellets. Biotechnol. Bioeng. 15:1193−1198.
Kandler, O., 1982. Garungsmechansimen bei Milchsaurebakterien. Forum Mikrobiol. 5:16.
Kascak, J. S., J. Kominek, and M. Roshr, 1996. Lactic acid. In: Biotechnology, Vol.6, Rehm, H. J., G. Reed, A. Puhler, and P. Stadler, Eds, pp. 293-306. Weinheim: VCH Press.
Keshavarz, T., R. Eglin, E. Walker, C. Bucke, G. Holt, A.T. Bull, and M.D. Lilly, 1990. The large−scale immobilization of Penicillium chrysogenum: Batch and continuous operation in an air−lift reactor. Biotechnol. Bioeng. 36:763 −700.
Kosakai, Y., YS. Park, and M. Okabe, 1997. Enhancement of L (+)−lactic acid production using mycelial flocs of Rhizopus oryzae. Biotechnol. Bioeng. 55:461-470.
Lin, JP., SD. Ruan, and PL. Cen, 1998. Mathematical model of L−lactic acid fermentation in a RDC coupled with product separation by ionexchange. Chem. Eng. Commun. 168:59−79.
Lipinsky, E. S. and R. G. Sinclair, 1986. Environmentally benign lactic acid polymers can be produced in large quantities at low process for packaging and consumer goods. Chem. Eng. Prog. 82(8):26−32.
Lockwood, L. B., G. B. Ward, and O. E. May, 1936. The physiology of Rhizopus oryzae. J. Agric. Res. 53:849−857.
Miura, S., T. Arimura, M. Hoshino, M. Kojima, L. Dwiarti, and M. Okabe, 2003. Optimization and scale-up of L−lactic acid fermentation by mutant strain Rhizopus sp. MK-96-1196 in airlift bioreactors. J. Biosci. Bioeng. 96(1): 65−69.
Nielsen, J. J., and S. Veibel, 1967. The reactivity of lactic acid and some of its simple derivatives. Acta. Polytech. Scand. 63:67−75.
Ohara, H., 1994. Poly-L-lactic acid as biodegradable plastic. Biosci. ind. 52:642-644.
Park, E. Y., Y. Kosakai, and M. Okabe, 1998. Efficient Production of L (+)-lactic acid using mycelial cotton-like flocs of Rhizopus oryzae in an air−lift bioreactor. Biotechnol. Prog. 14: 699−704.
Peter, C. F., and P. A. Sullivan, 1998. The Rhizopus oryzae secreted aspartic proteinase gene family: an analysis of gene expression. Microbiol. 144:2355−2366.
Roble, N. D., J. C. Ogbonna and H. Tanaka, 2003. L−lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrical). Biotechnol. Lett. 25: 1093-1098
Schugerl, K., R. Whittler, and T. Lorentz, 1983. The use of molds in pellet form. Trends Biotechnol. 1: 120-127.
Skory, C. D., S. N. Freer, and R. J. Bothast, 1998. Production of L−lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. Lett. 20(2):191−194.
Soccol, C. R., B. Marin, M. Raimbault, and JM. Lebault, 1994a. Potential of solid state fermentation for production of L (+)−lactic acid by Rhizopus oryzae . Appl. Micribio. Biotechnol. 41:286−290.
Soccol, C. R., VI. Stonoga, and M. Raimbault, 1994b. Production of L (+)− lactic acid by Rhizopus species. World. J. Microbio. Biotechnol.10:433−435.
Sun, Y., Y. L. Li, and S. Bai, 1999. Modeling of continuous L (+)−lactic acid production with immobilized R.. oryzae in an airlift bioreactor. Biochem. Eng. J. 31:87−90.
Suntornsuk, W. and YD. Hang, 1994. Efficacy of chemicals for controlling colony spread by Rhizopus species. Research Note.7:185−188.
Suntornsuk, W. and YD. Hang, 1994. Strain improvement of Rhizopus oryzae for production of L (+)−lactic acid and glucoamylase. Lett. Appl. Microbiol. 19:249-252.
Tay, A. and S. P. Yang, 2002. Production of L (+)−lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 80: 1−12.
Tsai, S.P. and S.H. Moon, 1998. An Integrated Bioconversion Process for Production of L− lactic acid from Starchy Potato Feedstocks. Appl. Biochem. Biotechnol. 70−72:417−428.
Van Ness, J.H. 1981. Hydroxy Carboxylic Acids. In Kirk Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 13, 80−103. J. Wiley and Sons, New York.
Vickory, TB. 1985. Lactic acid. In: Blanch HW, Drew S, Wang DIC, eds. The Practice of Biotechnology: Commodity Products, Vol.3. Elmsford,pp. 761−776.
Wang, H. L. and C. W. Hesseltine, 1970. Sufu and Lao−Chao. J. Agric. Food Chem. 18:572−575.
Wang, H. H., 1980. Fermented rice products. In: Luh, B.S. (ED), Rice: Production and Utilization. Rev. Educ.: Avi Publishing Co., pp. 650−689.
Wang, H. H., M. N. Lai, S. J. Jou, and J. C. Wang, 1983. Solid state alcohol fermentation of cereal (Kao−Liang) in column bioreactor. Journal of Biomass Energy Society of China (Taipei), 2:45−52.
Wang, C. W., Z. Lu, and G. T. Tsao, 1995. Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Appl. Biochem. Biotechnol. 51/52:57−71.
Webster, J. 1980. Introduction to Fungi. 2nd edn, p.213. Cambridge: Cambridge University Press.
Whittler, R., H. Baumgartl, D. W. Lubbers, and K. Schugerl, 1986. Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurement. Biotechnol. Bioeng. 28:1024−1036.
Woiciechowski, AL., CR. Soccol, LP. Ramos, and A. Randey, 1999. Experimental design to enchance the production of L (+)−lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem. 34:949−955.
Wright, B. E., A. Longacre, and J. Reimers, 1996. Models of metabolism in Rhizopus oryzae. J. Theor. Biol.182:453−457.
Yin, P., K. Yahiro, T. Ishigaki, Y. Park, and M. Okabe, 1998. L (+)− lactic acid production by repeated batch culture of Rhizopus oryzae in an air−lift bioreactor. J. Ferment. Bioeng .85:96-100.
Yin, P.M., N. Nishina, Y. Kosakai, K. Yahiro, Y.S. Park, and M. Okabe, 1997. Enhanced production of L (+)−lactic acid from corn starch in culture of Rhizopus oryzae using air-lift bioreactor. J. Ferment. Bioeng.. 84:249-253.
Yoneya, T. and Y. Sato, 1980a. Effect of growth condition on the formation of Rhizopus oryzae javanicus, Funfi alcohol dehydrgenase. Agric. Biol. Chem.44:1949-1959.
Yoneya, T. and Y. Sato, 1980b. Comparison of two alcohol dehydrogenases in the fungus Rhizopus javanicus. Appl. Environ. Microbiol.40:967-969.
Yu, R. C., 1991. Production of L(+)- lactic acid, glucoanylase, and lactate dehydrogenase by Rhizopus oryzae from agricultural commodities. PhD thesis. Cornell University, Ithaca, New York.
Zhou, Y., JM. Dominguez, N. Cao, J. Du, and GT. Tsao, 1999. Optimization of L−lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl. Biochem. Biotechnol .77−79:401−407.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top