跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳周楠
研究生(外文):Chou-Nan Chen
論文名稱:晶圓記號辨識的研究
論文名稱(外文):STUDY ON WAFER IDENTIFICATION RECOGNITION
指導教授:許超雲許超雲引用關係
指導教授(外文):Chau-Yun Hsu
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:47
中文關鍵詞:晶圓記號
外文關鍵詞:Wafer ID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:430
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對半導體製造業的封裝、測試製程而言,將晶圓資料庫內的晶圓測試圖和測試結果與各晶圓記號連結是一件很重要的事。晶圓上的記號如同車牌一樣,具有唯一的識別號碼,含有許多的資訊,例如,此片晶圓的測試圖(wafer map)、晶圓內的晶片(die)是哪種型號等。
本論文所提出之晶圓記號辨識系統,包含前置處理、晶圓影像處理、晶圓記號字串的定位、晶圓字元切割、晶圓字元辨識等五大部分。
晶圓記號的辨識與車牌辨識相似,但有部分不同,例如,為了和其他晶圓製造商所生產的晶圓區別,則要求其晶圓記號為180度的反相。
為了簡化程式作業,前置處理:包含用定位片控制晶圓記號傾斜角度在+/-1度內、晶圓記號若是180度反相,則先旋轉為正常模式,再取RGB影像,接著以影像處理的技術,將讀入之影像處理成480X640解析度之灰階影像,再利用Otsu法找出門檻值,將灰階晶圓字串影像轉成二值化影像,再以Sobel邊緣偵測法找出晶圓字串的邊緣;在字元切割部分,利用垂直投影法找出晶圓字串的高度,再利用水平投影法找出晶圓字串的寛度,再將晶圓字元切割出來,最後,切割完成的晶圓字元以樣板比對法(Template matching),將晶圓字串影像中的晶圓字元辨識出來。
本系統從生產線擷取53張有晶圓記號的影像(各取自6英吋、8英吋、12英吋晶圓),來進行晶圓記號辨識的研究,實驗結果晶圓記號辨識成功率為81.1%,每張影像辨識時間約需2.2秒,雖然晶圓記號辨識成功率不是非常高但其優點是節省人力,對生產力的提升有很大的幫助。
It is important for Assembly/Test process of semiconductor manufacturing to link wafer Identification (wafer ID) generated by Laser scribed with wafer Database. The wafer ID like a card plate license has a unique number and has much process information such as wafer test result which has been uploaded to wafer Database for successive processes such as dicing saw, die mount, wire bond, or final test.
This thesis proposed a recognizing wafer ID with the Template matching method to recognize the wafer ID engraved by Laser.
The wafer ID recognition system consists of pre-processing, image processing, locating wafer ID, segmenting characters from wafer ID, extracting character from wafer ID, and wafer ID output. In pre-processing, adjust a wafer with location pin to get less than 1 degree slope, focus on wafer ID window to simply process ,and rotate the wafer 180 degrees when the wafer is made by vendors; in the image processing, we convert a RGB image into a gray image which has been normalized to 480 by 640 resolution and then use Otsu’s method to find an adaptive threshold value which could automatically convert a gray image into binarized image, instead of trial and error to get a threshold value, finally use the Sobel edge detector to identify the edge of wafer ID; in locating wafer ID, first we use vertical projection method to decide the height of wafer ID string, and then use horizontal projection method to identify the width of wafer ID string; in segmenting characters, we use Template matching method to recognize the character of wafer ID image; and then display matching result from the recognize the character.
This system is evaluated by 53 wafer ID images from manufacturing. The successful rate of recognizing wafer ID is 81.1% which is not high rate but improving productivity. The average recognition time of each image is 2.2 seconds.
誌謝 I
ABSTRACT II
摘要 III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES IX
CHAPTER 1 1
INTRODUCTION 1
1.1 MOTIVATION 1
1.2 THESIS ORGANIZATION 2
1.3 WAFER ID RECOGNITION SYSTEM 3
1.3.1 Hardware 3
1.3.2 Software 4
CHAPTER 2 5
RELATIVE LITERATURE RESEARCH 5
2.1 LOCATING CAR LICENSE RESEARCH 5
2.2 SEGMENTING CHARACTER RESEARCH 5
2.3 RECOGNIZING CHARACTER RESEARCH 6
CHAPTER 3 7
WAFER ID RECOGNITION SYSTEM 7
3.1 IMAGE PROCESSING 7
3.1.1 Image Acqusition 7
3.1.2 Normalization Image 8
3.1.3 Convert Color image to Gray image or to Binary image 8
3.1.3.1 Thresholding 9
3.1.3.2 Adaptive Thresholding 10
3.2 LOCATING WAFER ID STRING 12
3.2.1 Edge Detection 13
3.2.1.1 Sobel Edge Detector 14
3.2.1.2 Sobel Edge Detection Method 16
3.2.1.3 Sobel Vertical Detection 16
3.2.2 Projection Profiles 17
3.2.2.1 Vertical Projection Method 19
3.2.2.2 Horizontal Projection Method 21
3.2.3 Window of Wafer ID String 23
3.3 CORRECT SKEWING OF WAFER ID STRING 24
3.4 SEGMENTING CHARACTER FROM WINDOW OF WAFER ID STRING 24
3.4.1 Segmenting characters using Vertical Projection 26
3.4.2 Segmenting characters using Horizontal Projection 27
3.4.3 Normalizing Characters of wafer ID string 28
3.5 RECOGNIZING CHARACTERS FROM WAFER ID STRING 29
3.5.1 Creating a set Full form of standard Character Template 30
3.5.2 Template Matching 32
3.5.3 Extracting Character from wafer ID string 32
3.5.4 Output characters of Wafer ID String 34
CHAPTER 4 35
SIMULATING RESULT 35
4.1 SIMULATING TOOLS 35
4.1.1 Software 35
4.1.2 Hardware Architecture 35
4.1.2 Hardware Architecture 35
4.2 SIMULATING RESULT 35
4.2.1 Simulating Output 35
4.3 ANALYSIS OF SIMULATING RESULT AND DISCUSSION 37
4.4 FAILURE ANALYSIS AND DISUSSION 38
CHAPTER 5 41
CONCLUSIONS 41
5.1 CONCLUSIONS 41
CHAPTER 6 42
FUTURE STUDY 42
6.1 FUTURE STUDY 42
REFERENCES 44
LIST OF ABREVICATION 47
[1] Jyun-U Liao, A System for the Automatic and Real-Time Recognition of Vehicle License Plate, Master Thesis, Department of Computer Science and Information Engineering, Chung Hua University, 2000.
[2] Jeng-Yuh Li, The Study of Car License Recognition System, Master Thesis, Department of Information Science and Management with MBA, Providence University, 2003.
[3] Jyh-Long Chen, Automatic License Number Recognition for Car Image Taken for Parking Violation, Master Thesis, Institude of Computer and Information Science, National Chiao Tung University, 2001.
[4] Da-Shan Gao, Jie Zhou, “Car license plates detection from complex scene, ” in Proc. 5th Int. Conf. Signal Processing, vol. 2, 2000, pp.1409–1414.
[5] Tai-Liang Lin, Intelligent License Plate Searching and Content Segmentation in Image Processing, Master Thesis, Department of Electrical Engineering, Nation Taiwan University, 1999.
[6] Guo-Yan Lee, A Study on Vehicle License Plate Recognition System , Master Thesis, Graduate Institute Communication Engineering, Tatung University, 2004.
[7] Ching-Chung Wang, The Study of Car Plat License Recognition System , Master Thesis, Graduate Institute Communication Engineering, Tatung University, 2005.
[8] Hsin-Te Lue, Recognition System of Lincese Plate Using Multi-Expert , Master Thesis, Department of Computer Science and Information Engineering, Nation Central University, 2002.
[9] Rong-Shuh Duh, Edge Detection and its Performance Evaluation, Master Thesis, Institute of Computer and Decision Sciences, National Tsing Hua University, Hsinchu, Taiwan, Republic of China,1986.
[10] Fu-Chu Wen, Recognition of License Plate Characters Using Neural Networks and Template Matching, Master Thesis, Department of Electrical Engineering, Nation Taiwan University, 2000.
[11] Kuan-Liang Chen, Wafer ID Recognition Technology Research, Master Thesis, Department of Computer and Comunication Engineering, National Kaohsiung First University of Science & Technology, Yenchao,Kaohsiung, Taiwan, Republic of China, 2005.
[12] Richard O. Duda, “Pattern Recognition for HCI”, Department of Electrical Engineering, San Jose State University.
http://www.cs.princeton.edu/courses/archive/fall05/cos436/Duda/PR_home.htm
[13] Alasdair McAndrew, An Introduction to Digital Image Processing With Matlab, THOMSON, March 2004.
[14] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Trans. on System, Man, and Cybernetics, vol. SMC-9, pp. 62-66, no. 1, Jan. 1979.
[15] Rafael C. Gonzalez,Richard E. Woods, and Steven L. Eddins, Digital Image Processing using MATLAB, Pearson Prentice Hall, 2004.
[16] Yu-Ting Chuang, Text Detection in Color Iimages and Compound Document Compression, Master Thesis, The Graduate Institute of Communacation Engineering, National Taiwan University, 2003.
[17] Liu Jianzhuang, Li Wenqing, Tian Yupeng, “Automatic Threshoding of Gray-level Pictures Using Two-Dimension Otsu Method,” International Conf. on Circuits and Systems, vol. 1, pp. 325-327, June 1991.
[18] Vladimir Shapiro, Georgi Gluhchev, “Multinational License Plate Recognition System:Segmrntation and Classification,” Pattern Recognition, Proceedings of the 17th International Conference, Vol.4, pp. 352- 355, 2004.
[19] Alasdair McAndrew, An Introduction to Digital Image Processing with Matlab Notes for SCM2511 Image Processing 1, Semester 1, 2004, School of Computer Science and Mathematics, Victoria University of Technology.
http://sci.vu.edu.au/~amca/SCM2511/notes2004.pdf
[20] Robert Fisher, Simon Perkins, Ashley Walker, and Erik Wolfart , “Image Processing Learning resources”.
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm
[21] Daniel X. Le and George R. Thoma, “Automated portrait/landscape mode detection on a binary image”.
http://archive.nlm.nih.gov/pubs/le/spie93/spie93.php
[22] BIANCHI, Reinaldo A. C., LA NEVE, Alessandro, “Final Term Projects in Electrical Engineering: Partnership with Industry to Prepare Future Engineers,” In Proceedings of the IEEE, v.80, n.7, pp. 1079-1092, July 1992.
[23] SEMI M12-92, Specification for serial Alphanumeric Marking of Front Surface of Wafer, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文