跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江建忠
研究生(外文):Chien-chung Chian
論文名稱:含觸媒蔗渣熱裂解的動力學研究
論文名稱(外文):Pyrolysis Kinetics of Catalytic Sugarcane Bagasse
指導教授:王榮基王榮基引用關係
指導教授(外文):Rong-chi Wang
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:116
中文關鍵詞:Coats-Redfern method動力溫度方程式熱重分析(TGA)甘蔗渣
外文關鍵詞:Coats-Redfern methodkinetic temperature equationsugarcane bagassethermogravimetric analysis (TGA)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
利用熱重分析儀(TGA)研究在粒徑範圍(0.246-0.297 mm)下,不同加熱速率(5℃/min, 20℃/min)以空氣為載體之甘蔗渣原料、經脫礦作用後之蔗渣以及添加觸媒後之蔗渣的動力性質。動力溫度方程式結合一次方反應以及Coats-Redfern法結合常見的固體狀態方程式g(��)被使用來作為實驗數據之解析並計算出反應活化能E及預反應因子A。
實驗結果指出添加觸媒並不總是會使活化能降低,有時候反而會使活化能稍微提高。從活化能的觀點看來本實驗結果指出觸媒的活性依次為K2CO3 > K2CO3+Ni(NO3)2 >K2SO4+Ni(NO3)2,但此結果是有爭論的。因為影響速率常數的因子不只是活化能還有預反應因子。在加入了預反應因子的影響後,我們推斷:對蔗渣而言觸媒的活性依次應為K2SO4+Ni(NO3)2 >K2CO3+Ni(NO3)2 >K2CO3。本研究發現轉化率Wkf的選擇對TGA實驗分析有關鍵性的影響。
The kinetic parameters of sugarcane bagasse with particle size (0.246 mm- 0.297 mm) performed at different heating rates (5 ℃/min, 20 ℃/min) were studied by TGA in the origin, demineralized and impregnated catalyst ones under air atmosphere. First order reaction combined kinetic temperature equation and Coats-Redfern method with different expressions of g (��) would be used to estimate activation energy, E, and pre-exponential factor, A.
The results indicate that catalytic components do not always decrease the activation energy, and rather, small increases in activation energy. From the activation point of view, the order of the activity of catalyzers is K2CO3 >K2CO3+Ni(NO3)2 >K2SO4+Ni(NO3)2. This is a debatable border area. Finally, we infer that the reactivity order of the three catalyzers is K2SO4+Ni(NO3)2 >K2CO3+Ni(NO3)2 >K2CO3, because that not only activation energy (E) but also pre-exponential factor (A) would affect the values of the rate constant, k. The selection of degree of conversion determined by the final mass fraction, Wkf, is an important step in TGA analysis.
CHAPTER
1 INTRODUCTION................................................1
2 LITERATURE SURVEY...........................................8
2.1 The thermal degradation of coal or coal chars...............9
2.2 Thermal analysis of biomass................................13
3 EXPERIMENTAL...............................................23
3.1 Experimental apparatus.....................................23
3.2 Experimental material......................................23
3.3 Experimental procedure.....................................25
3.3.1 Coal and coal char........................................25
3.3.2 Bagasse...................................................25
3.4 Demineralized bagasse......................................27
3.5 Impregnated catalyst bagasse...............................27
3.5.1 10%K2SO4 + 1% Ni(NO3)2.....................................27
3.5.2 10%K2CO3 + 1% Ni(NO3)2.....................................27
3.5.3 10%K2CO3...................................................28
3.6 Reactions..................................................28
3.6.1 One-step reaction............................................28
3.6.2 Two-step reaction............................................29
3.7 Kinetic Methods............................................29
3.7.1 Kinetic Methods used in isothermal analysis..................29
3.7.2 Kinetic methods used in Non-isothermal analysis..............30
3.7.2.1 The used kinetic equation derived from kinetic temperature equation (Mianowaski and Radko, 1992; 1994)........................30
3.7.2.2 Data coordination of experimental data (Mianowaski and Radko, 1992; 1994).................................33
3.7.2.3 Coats-Redfern method............................38
3.7.2.4 The arrangement of experimental data............40
4 RESULTS AND DISCUSSION.....................................42
4.1 Non-isothermal results.....................................45
4.2 Isothermal results.........................................60
4.3 Non-isothermal results of five types of bagasse............63
5 CONCLUSIONS...............................................109
REFERENCES........................................................111








LIST OF TABLES

TABLE PAGE
2.1 Activation energy reported in previous literature for the reactivity of coal-chars……………………...………………………………………13
2.2 Kinetics parameters reported in literature for the reactivity of biomass bagasse……………………………...…………………………………21
3.1 Proximate, ultimate analysis and calorific values (HHV, MJ/kg) of used coal, coal char and sugarcane bagasse in this study…………………...23
3.2 Commonly used alpha functions for solid state thermal decomposition reactions……………......……………..……………………………….40
4.1 The linearized equations of the kinetic models used in the fitting for coal and coal char experiment data with the average linear correlation coefficients……………………………...……………………………..45
4.2 The estimates of activation energy (E) and pre-exponential factor (A) of raw bagasse by using Coats-Redfern method combined with commonly used alpha function at heating rate 5℃/min…………………….......53
4.3 The estimates of activation energy (E) and pre-exponential factor (A) of raw bagasse by using Coats-Redfern method combined with commonly used alpha function at heating rate 20℃/min……………………….54
4.4 The linearized equations of the kinetic models used in the fitting with the average linear correlation coefficients, volatilization stage (260-320℃) and carbonization stage (340-425℃), respectively…………...…..62
4.5 Results of kinetic parameters used isothermal and non-isothermal method………………………………………………………………..64
4.6 Temperature of active pyrolysis and volatilization of bagasse……….78
4.7 The estimates of activation energy (E) and pre-exponential factor (A) of demineralized bagasse by using Coats-Redfern method combined with commonly used alpha function at heating rate 5℃/min…....................80
4.8 The estimates of activation energy (E) and pre-exponential factor (A) of demineralized bagasse by using Coats-Redfern method combined with commonly used alpha function at heating rate 20℃/min………….….81
4.9 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2CO3 by using Coats-Redfern method combined with commonly used alpha function at heating rate 5℃/min…………82
4.10 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2CO3 by using Coats-Redfern method combined with commonly used alpha function at heating rate 20 /min……….…83
4.11 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2CO3 with 1% Ni(NO3)2 by using Coats-Redfern method combined with commonly used alpha function at heating rate 5℃/min…………………………………………………………….…...84
4.12 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2CO3 with 1% Ni(NO3)2 by using Coats-Redfern method combined with commonly used alpha function at heating rate 20℃/min……………………………………………………………….85
4.13 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2SO4 with 1% Ni(NO3)2 by using Coats-Redfern method combined with commonly used alpha function at heating rate 5℃/min………………………………....................................................86
4.14 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse add 10% K2SO4 with 1% Ni(NO3)2 by using Coats-Redfern method combined with commonly used alpha function at heating rate 20℃/min……………………………………………………………….87
4.15 The estimates of activation energy (E), pre-exponential factor (A) and the correlation coefficient, R2, of five bagasse samples by using Coats-Redfern methos combined with three-dimensional diffusion mechanism (D3) at selecting temperature…………………..………....88
4.16 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse-samples by using first order reaction combined kinetic temperature equation with two step method……………….………….90
4.17 The estimates of activation energy (E) and pre-exponential factor (A) of bagasse-samples by using Coats-Redfern method combined with three-dimensional diffusion mechanism (D3)………………………..91












LIST OF FIGURES
FIGURE PAGE
3.1 An example after object temperature selected……………………...34
3.2 d��/dT versus temperature for this study with heating rate 20℃/min……………………………………….………….……………...35
3.3 ln(-ln(1-��))+2ln(Tm/T) versus 1-(Tm/T) with heating rate 20℃/min………………………………………………….………………36
3.4 ln(-ln(1-��))-2ln(T) versus 1/T with heating rate 20℃/min….……....38
4.1 Coal conversion during TGA runs up to reaction temperature (constant heating rate of 20℃/min, 40ml/min).…………………….42
4.2 Coal char conversion during TGA runs up to reaction temperature (constant heating rate of 20℃/min, 40ml/min)……………………..43
4.3 Arrhenius plot for homogeneous model fitting of coal (300-550℃).46
4.4 Arrhenius plot for different models fitting of coal char (T=700-850℃)…………………………………………………………………...47
4.5 Non-isothermal thermograms for raw bagasse under air atmosphere with different heating rates (— :20℃/min ; :5℃/min)….............49
4.6 Non-isothermal thermograms dW/dT versus T for raw bagasse under air atmosphere with different heating rates (—:20℃/ min; :5℃/min)
.………………………...……………………………………………50
4.7 Comparison between experimental data and Coats-Redfern method prediction for raw bagasse under heating rate 5℃/min…….……….56
4.8 Comparison between experimental data and Coats-Redfern method prediction for raw bagasse under heating rate 20℃/min…………...57
4.9 Sugarcane bagasse DTG curve at 10℃/min (Garcìa-Pèrez et al., 2001)………………………………………………………………..58
4.10 Isothermal thermograms for raw bagasse under air atmosphere with different temperatures………………………………………………60
4.11 Arrhenius plot for raw bagasse with the reaction control of shrinking-cone model (T=260-320℃) and homogeneous model (T=340-425℃)……………………………………………………...63
4.12 Non-isothermal thermograms for demineralization bagasse under air atmosphere at different heating rates ( —:20℃/min; :5℃/min).. 66
4.13 Non-isothermal thermograms for bagasse added 10 % potassium carbonate under air atmosphere at different heating rates (— :20℃/min; :5℃/min)………………...………………………………...67
4.14 Non-isothermal thermograms for bagasse added 10 % potassium carbonate with 1 % nickel nitrate under air atmosphere at different heating rates (—:20℃/min; :5℃/min)………..…………………68
4.15 Non-isothermal thermograms for bagasse added 10 % potassium sulfate with 1 % nickel nitrate under air atmosphere at different heating rates (—:20℃/min; :5℃/min)…..………………………69
4.16 Non-isothermal thermograms dW/dT versus T for demineralization bagasse under air atmosphere at different heating rates (—:20℃/min; :5℃/min)………….……………………………………….70
4.17 Non-isothermal thermograms dW/dT versus T for bagasse added 10 % potassium carbonate under air atmosphere at different heating rates (—:20℃/min; :5℃/min)………………………………………...71
4.18 Non-isothermal thermograms dW/dT versus T for bagasse added 10 % potassium carbonate with 1 % nickel nitrate under air atmosphere at different heating rates (—:20℃/min; :5℃/min)……….……...72
4.19 Non-isothermal thermograms dW/dT versus T for bagasse added 10 % potassium sulfate with 1 % nickel nitrate under air atmosphere at different heating rates (—:20℃/min; :5℃/min)………………...73
4.20 Typical thermogravimetric curve for the pyrolysis of raw bagasse under air atmosphere with different heating rate (—:20℃/min; :5℃
/min)…………………………………...……………………………76
4.21 Conversion degree for: curve 1, complete and irreversible conversion; curve 2, complex conversion of high molecular weight substance (Mianowaski and Radko, 1994)…………………………………….77
4.22 Comparison between experimental data and Coats-Redfern method prediction for demineralized bagasse under heating rate 5℃/min….92
4.23 Comparison between experimental data and Coats-Redfern method prediction for demineralized bagasse under heating rate 20℃/min...93
4.24 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2CO3 under heating rate 5℃/min……………………………………………………………..94
4.25 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2CO3 under heating rate 20℃/min……………..……………………………………………..95
4.26 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2CO3 with 1% Ni(NO3)2 under heating rate 5℃/min………………………………………………...96
4.27 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2CO3 with 1% Ni(NO3)2 under heating rate 20℃/min……………………………………………...97
4.28 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2SO4 with 1% Ni(NO3)2 under heating rate 5℃/min………………………………………………...98
4.29 Comparison between experimental data and Coats-Redfern method prediction for bagasse added 10% K2SO4 with 1% Ni(NO3)2 under heating rate 20℃/min……………………………...………………..99
4.30 Non-isothermal thermograms �� versus T comparing raw bagasse with demineralization bagasse under air atmosphere at heating rate 20℃/min (— raw; demineralization)…………..……………………102
4.31 Non-isothermal thermograms �� versus T comparing raw bagasse with demineralization bagasse under air atmosphere at heating rate 5℃/min (— raw; demineralization)……………………………103
4.32 Non-isothermal thermograms �� versus T of different salt impregnation bagasse under air atmosphere at heating rate 5℃/min………………………………………………………………..105
4.33 Non-isothermal thermograms �� versus T of different salt impregnation bagasse under air atmosphere at heating rate 20℃/min………………………………………………………………..106


NOMENCLATURE

A pre-exponential factor (s-1)
E activation energy (kJ/mol)
f(��) function symbol of the argument ��
g(��) weight integrals
k reaction rate (s-1)
n order of reaction
q rate of heating (K/min)
R universal gas constant, 8.314 (J/mol K)
T absolute temperature (K)
Tf final temperature of the sample (K)
Ti initial temperature (K)
Tm maximal conversion rate point temperature (K)
Tkf final temperature of the sample at kinetic area (K)
t elapsed time (s)
u dimensionless group, E/RT
ui dimensionless group at T=Ti, E/RTi
W Residual weight fraction
Wi initial weight fraction of the sample
Wc maximal conversion rate point temperature weight fraction
Wf finial weight fraction of the sample
Wkf finial weight frictionof the sample at kinetic area
x degree of conversion, as ��
Greek Letters
�� degree of conversion
�尃 fraction of reactant decomposed at temperature Ti
�峿 fraction of reactant decomposed at maximal conversion rate point temperature Tm
REFERENCES


Adanez, J. and L. F. de Diego, “Reactivity of Lignite Chars with CO2: Influence of the Mineral Matter”, International Chemical Engineering, 33, 656-662 (1993).

Adanez, J., L. F. de Diego, F. Garcia-Labiano, A. Abad and J. C. Abanades, “Determination of Biomass Char Combustion Reactivities for FBC Applications by a Combined Method”, Ind. Eng. Chem. Res., 40, 4317-4323 (2001).

Agblevor, F. A. and S. Besler, “Inorganic Compounds in Biomass Feedstocks. 1. Effect on the Qualiy of Fast Pyrolysis Oils”, Energy and Fuels, 10, 293-298 (1996).

Aiman, S. and J. F. Stubington, “The Pyrolysis Kinetics of Bagasse at Low Heating Rates”, Biomass and Bioenergy, 5, 113-120 (1993).

Alonso, M. J. G., D. Alvarez, A. G. Borrego, R. Menendez and G. Marban, “Systematic Effects of Coal Rank and Type on the Kinetic of Coal Pyrolysis”, Energy and Fuels, 15, 413-428 (2001).

Antal, M. J. and G. Varhegyi, “Cellulose Pyrolysis Kinetics: The Current State of Knowledge”, Ind. Eng. Chem. Res., 34, 703-717 (1995).

Antal, M. J., G. Varhegyi and E. Jakab, “Cellulose Pyrolysis Kinetics: Recisted”, Ind. Eng. Chem. Res., 37, 1267-1275 (1998).

Biagini, E., F. Lippi, L. Petarca and L. Tognotti, “ Devolatilization Rate of Biomasses and Coal-biomass Blends: An Experimental Investigation”, Fuel, 81, 1041-1050 (2002).

Britt, P. F., W. S. Mungall and A. C. Bunhanan, “Pyrolysis of a Model of Aromatic Carboxylic Acids in Low-Rank Coal”, Energy and Fuels, 12, 660-661 (1998).

Bruello, S., I. Flour, P. Maissa and B. Bruyet, “Kinetic Study of Char Combustion in a Fluidized Bed”, Fuel, 75, 536-544 (1996).

Coats, A. W. and J. P. Redfern, “Kinetic Parameters from Thermogravimetric Data”, Nature, 201, 68-69 (1964).

Dayton, D. C., B. M. Jenkins, S. Q. Turn, R. R. Bakker, R. B. Williams, D. Belle-Oudry and L. M. Hill, “Release of Inorganic Constituents from Leached Biomass During Thermal Conversion”, Energy and Fuels, 13, 860-870 (1999).

Demirbas, A., “Calculation of Higher Heating Values of Biomass fuels”, Fuels, 76, 431-434 (1997).

Di Blasi, C., “Kinetic and Heat Transfer Control in the Slow and Flash Pyrolysis of Solids”, Ind. Eng. Chem. Res., 35, 37-46 (1996).

Essig, M., G. N. Richards and E. Schenck, Cellulose and Wood-Chemistry and Technology, Wiley, New York, 1989.

Feng, B., A. Jensen, S. K. Bhatia and K. Dam-Johansen, “Activation Energy Distribution of Thermal Annealing of a Bituminous Coal”,Energy and Fuels, 17, 399-404 (2003).

Garcìa-Pèrez, M., A. Chaala, J. Yang and C. Roy, “Co-Pyrolysis of Sugarcane Bagasse with Ptroleum Residue. Part I: Thermogravimetric Analysis”, Fuel, 80, 1245-1258 (2001).

Gopalakrishnan, R. and C. H. Bartholomew, “Effects of CaO, High-Temperature Treatment, Carbon Structure, and Coal Rank on Intrinsic Char Oxidation Rates”, Energy and Fuels, 10, 689-695 (1996).

Gray, M. R., W. H. Corcoran and G. R. Gavalas, “Pyrolysis of a Wood-Derived Material. Effects of Mositure and Ash Content”, Ind. Eng. Chem. Process Des. Dev., 24, 646-651 (1985).

Guo, J. and A. C. Lua, “Kinetic Study on Pyrolytic Process of Oil-Palm Solid Waste Using Two-Step Consecutive Reaction Model”, Biomass and Bioenergy, 20, 223-233 (2001).
Hamor, R. J., I. W. Smith and R. J. Tyler, “Kinetics of Combustion of a Pulverized Brown Coal Char Between 630 and 2200 K”, Combustion and Flame, 21, 153-162 (1973).

Haykírí-Açma, H., A. Ersoy-Meriçboyu and S. Küçükbayrak, “Effect of mineral on the reactivity of lignite chars”, Energy Conversion & Management, 42, 11-20 (2001).

Himmelblau, D. M. and J. B. Riggs, Basic Principles and Calculations in Chemical Engineering, Seventh Edition, Prentice Hall Professional Technical Reference, New Jersey, (2004).

Hongqiang, L., S. Chenggong and L. Baoqing, “Combustion Kinetics of Char from Pyrolysis of Coal with Coke-Oven Gas”, journal of fuel chemistry and technology, 27, 246-250 (1999).

Horowitz, H. H. and G. Metzger, “A New Analysis of Thermogravimetric Traces”, Analytical Chemistry, 35, 1464-1468 (1963).

Janse, A. M. C., Harald G. de Jonge, W. Prins and W. P. M. van Swaaij, “Combustion Kinetics of Char Obtained by Flish Pyrolysis of Pine Wood”, Ind. Eng. Chem. Res., 37, 3909-3918 (1998).

Jüntgen, H. and K. H. van Heek, “Proposal for a Regenerative High-Temperature Process for Coal Gas Cleanup with Calcined Limestone”, Fuel, 2, 103-112 (1968).

Katyal, S., K. Thambimuthu, M. Valix, “Carbonization of Bagasse in a Fixed Bed Reactor: Influence of Process Variables on Char Yield and Characteristics”, renewable Energy, 28, 713-725 (2003).

Kim, B. S. and H. Y. Sohn, “Carbonization of Bagasse in a Fixed Bed Reactor: Influence of Process Variables on Char Yield and Characteristics”, renewable Energy, 28, 713-725 (2003).

Koullas, D. P., N. Nikolaou and E. G. Koukios, “Modelling Non-isothermal Kinetics of Biomass Prepyrolysis at Low Pressure”, Bioresources Technology, 63, 261-266 (1998).
Kucukbayrak, S., B. Durus, A. E. Mericboyu and E. Kadioglu, “Estimation of Calorific Values of Turkish Lignites”, Fuel, 70, 979-981 (1991).

Lee, J. M., Y. J. Kim, W. J. Lee and S. D. Kim, “Coal-Gasification Kinetics Derived from Pyrolysis in a Fluidized Bed Reactor”, Energy, 23, 475-488 (1998).

Lapuerta, M, J. J. Hernández and J. Rodríguez, “Kinetics of devolatilization of forestry wastes from thermogravimetric analysis”, Biomass and Bioenergy, 27, 385-391 (2004).

Levenspiel, O., Chemical Reaction Engineering, The 2nd Edition, John Wiley and Sons, New York, 1972.

Lopez Pasquli, C. E. and H. Herrera, “Pyrolysis of Lignin and IR Analysis of Residues”, Thermochimica Acta, 293, 39-46 (1997).

Luo, M. and B. Stanmore, “The combustion characteristics of char from pulverized bagasse”, Fuel, 71, 1002-1004 (1992).

Mansaray, K. G. and A. E. Ghaly, “Determination of Kinetic Parameters of Rice Husks in Oxygen Using Thermogravimetric Analysis”, Biomass and Bioenergy, 17, 19-31 (1999).

Mianowski, A. and T. Radko, “Evaluation of The Solution of a Standard Kinetic Equation for Non-Isothermal Conditions”, Thermochimica Acta, 204, 281-293 (1992).

Mianowski, A. and T. Radko, “Isokinetic Effect in Coal Pyrolysis”, International Conference on Structure and Properties of Coals, 15, 37-39 (1993).

Mianowski, A. and T. Radko, “The Possibility of Identification of Activation Energy by Means of The Temperature Criterion”, Thermochimica Acta, 247, 389-405 (1994).

Mianowski A. and T. Radko, “Thermokinetic analysis of coal pyrolysis process”, Journal of Thermal Analysis, 43, 247-259 (1995).
Mitchell, R. E., “Experimentally Determined Overall Burning Rates of Coal Chars”, Combust. Sci. Technol., 53, 165-186 (1987).

Molina, A, and F. Mondragón, “Reactivity of Coal Chars Gasification with Steam and CO2”, Fuel, 77, 1831-1839 (1998).

Moulijn, J. A. and F. Kapteijn, “Towards a Unified Theory of Reactions of Carbon with Oxygen-Containing Molecules”, Carbon, 33, 1155-1165 (1995).

Nassar, M. M., E. A. Ashour and S. S. Wahid, “Thermal Characteristics of Bagasse”, Journal of Applied Polymer Science, 61, 885-890 (1996).

Nassar, M. M., “Kinetic Studies on Thermal Degradation of Nonwood Plants”, Wood and Fiber Science, 17, 266-273 (1985).

Pasquali, C. E. and H. Herrera, “Pyrolysis of Lignin and IR Analysis of Residues”, Thermochimica Acta, 293, 39-46 (1997).

Peralta, D., N. P. Paterson, D. R. Dugwell and R. Kandiyoti, “Development of a Reactivity Test for Coal-Blend Combustion: The Laboratory-Scale Suspension-Firing Reactor”, Energy and Fuels, 16, 404-411 (2002).

Radko, T. and A. Mianowski, “The influence of mineral material upon the coking characteristics of coal”, Fuel, 77, 503-507 (1998).

Raveendran, K., A. Ganesh and K. C. Khilar, “Influence of mineral matter on biomass pyrolysis characteristics”, Fuel, 74, 1812-1822 (1995).

Raveendran, K. and A. Ganesh, “Adsorption Characteristics and Pore-Development of Biomass-Pyrolysis Char”, Fuel, 77, 769-781 (1998).

Reina, J., E. Velo and L. Puigjaner, “Thermogravimetric study of the pyrolysis of waste wood”, Thermochimica Acta, 320, 161-167 (1998).

Roberts, A. F., “A Review of Kinetics Data for The Pyrolysis of Wood and Related Substance”, Combustion Flame, 14, 261-272 (1970).

Safi, M. J., I. M. Mishra and B. Prasad, “Global degradation kinetics of pine needles in air”, Thermochimica Acta, 412, 155-162 (2004).

Sefain, M. Z., S. F. El-Kalyoubi and Shukry, “Thermal Behavior of Holo-and Hemicellulose Obtained from Rice Straw and Bagasse”, J. Polym. Sci., 23, 1569-1577 (1985).

Senneca, O., R. Chirone and P. Salatino, “Oxidative pyrolysis of solid fuels”, Journal of Analytical and Applied Pyrolysis, 71, 959-970 (2004).

Shevkoplyas, V. N. and V. I. Saranchuk, “The Impregnation effect On Low and Middle Rank Coals Structure Reorganization and Their Behavior during Pyrolysis”, Fuel, 79, 557-565 (2000).

Teng, H., Hung-Chi Lin and Jui-An Ho, “Thermogravimetric Analysis on Global Mass Loss Kinetics of Rice Hull Pyrolysis”, Ind. Eng. Chem. Res., 36, 3974-3977 (1997).

Van der Ham, A. G. J., A. B. M. Heesink, W. Prins and W. P. M. van Swaaij, “Proposal for a Regenerative High-Temperature Process for Coal Gas Cleanup with Calcined Limestone”, Ind. Eng. Chem. Res., 35, 1487-1495 (1996).

Varhegyi, G. and M. J. Antal, “Kinetics of the Thermal Decomposition of Cellulose, and Sugar Cane Bagasse”, Energy and Fuels., 3, 329-335 (1989).

Varhegyi, G., M. J. Antal, T. Szekely, F. Till and E. Jakab, “Simultaneous Thermogravimetric-Mass Spectrometric Studies of the Thermal Decomposition of Biopolymers. 1. Avicel Cellulose in the Presence and Absence and Absence of Catalysts”, Energy and Fuels., 2, 267-272 (1988).

Varhegyi, G., E. Jakab and M. J. Antal, “Is the Broido-Shafizadeh Model for Cellulose Pyrolysis Ture?”, Energy and Fuels., 8, 1345-1352 (1994).

Wang, W. X. and K. M. Thomas, “NO Release and Reactivity of Chars during Combustion: The Effect of Devolatilization Temperature and Heating Rate”, Energy and Fuels, 10, 409-416 (1996).

Yaman, S., “Pyrolysis of biomass to produce fuels and chemical feedstocks”, EnergyConversion and Management, 45, 651-671 (2004).

Zolin, A., A. Jensen, P. A. Jensen, F. Frandsen and K. Dam-Johansen, “The Influence of Inorganic Materials on the Thermal Deactivation of Fuel Chars”, Energy and Fuels, 15, 1110-1122 (2001).

Zolin, A., A. D. Jensen, P. A. Jensen and K. Dam-Johansen, “Experimental Study of Char Thermal Deactivation”, Fuel, 81, 1065-1075 (2002).

Zolin, A., A. Jensen, L. S. Pedersen and K. Dam-Johansen, “A Comparison of Coal Char Reactivity Determined from Thermogravimetric and Laminar Flow Reactor”, Energy & Fuels., 12, 268-276 (1998).

Zolin, A., A. Jensen, L. S. Pedersen and K. Dam-Johansen, “Coupling Thermal Deactivation with Oxidation for Predicting the Combustion of a Solid Fuel”, Combustion and Flame., 125, 1341-1360 (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top