跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/03 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明澈
研究生(外文):Ming-Che Li
論文名稱:新型(S)-1-甲基-2-[(2’-甲氧基)乙氧基]乙醇衍生之旋光性液晶材料的合成與光電性質之研究
論文名稱(外文):Ferroelectric and Antiferroelectric Properties of Novel Chiral Liquid Crystals Derived from (S)-1-methyl-2-[(2'-methoxy)ethoxy]ethanol
指導教授:吳勛隆
指導教授(外文):Shune-long Wu
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:111
中文關鍵詞:誘電性液晶反誘電性液晶無閥V型光電轉換行為含氧烷鏈
外文關鍵詞:antiferroelectricsferroelectricsV-shaped switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要以具有光學活性之(S)-1-methyl-2-[(2'-methoxy)ethoxy]ethanol 為起始物合成一系列旋光性液晶材料,並分別探討(i)非旋光末端烷鏈長度’m’及(ii)在硬核中心導入氟側邊取代基對於液晶相及物理光電特性的影響,以建立分子結構與旋光液晶相的關係。
實驗結果顯示:第一系列液晶材料I(m=8-12)具有SmA*-SmC*-SmX*的液晶相順序。第二系列液晶材料II(m=8-12)除了II (m=9)額外出現SmX*液晶相外,都具有SmA*-SmC*的液晶相順序。第三系列液晶材料III(m=8-12)在非旋光末端烷鏈碳數為8、9時出現 SmA*-SmCA*的液晶相順序,當碳數為10-12時出現出現SmA*-SmC*的液晶相順序。改變非旋光末端烷鏈長度’m’,可發現增加非旋光烷鏈的長度於第一、三系列液晶材料I,III (m=8-12),SmC*相的熱穩定性會增加但是SmA*的溫度範圍卻會變窄;於第二系列液晶材料II(m=8-12),因為SmC*-Cr.的相轉移溫度升高,因此減少了SmC*的溫度範圍。
此外,在硬核中心的苯環上導入第二、三位置氟側邊取代基會影響液晶相的生成與降低相轉移溫度、熔點及澄清點溫度。苯環第二位置之氟側邊取代基因受到遮蔽效應的影響,故部份相轉移溫度明顯的高於苯環上第三位置取代基的化合物。
光電應答的研究顯示:化合物II(m=11) 於SmC*液晶相中可得到V型光電轉換行為,而化合物III(m=9)於SmCA*液晶相中可得到U型與雙遲滯光電轉換行為。比較三系列液晶材料(m=8-12)可發現當化合物導入氟側邊取代基時,會有較低的自發性極化值與較大的傾斜角。在自發性極化值方面三系列化合物(m=9-12)最大值的介於6-16 nC/cm2,而三系列化合物(m=8-12)的傾斜角最大值介於20-30o。
The primary of this research work was an attempt to elucidate the correlation between structure and property in the chiral smectic liquid crystal. A homologous series of chiral materials derived from optically active (S)-1-methyl-2-[(2’-methoxy) ethoxy]ethanol has been successfully synthesized and the structures-property relationship investigated in the chiral liquid crystal system. The target compounds were modified independently by (i) the achiral peripheral methylene chain length ‘m’ and (ii) the lateral fluoro substituents in the phenyl ring of the core.
The results showed that compounds I(m=8-12) exhibited the phases sequence of SmA*-SmC*-SmX*, compounds II(m=8-12) exhibited the phases sequence of SmA*-SmC*, while the compound II(m=9) posesses an additional SmX*. In the compounds III(m=8-12), compounds III (m=8, 9) with shorter alkyl chain displayed an enantiotropic phase sequence of SmA*-SmCA* while compounds III(m=10-12) with longer alkyl chain exhibited enantiotropic phase sequence of SmA*-SmC*. Extending achiral alkyl chain length in compounds I(m=8-12) and III(m=8-12) stabilizes the temperature ranges of SmC* phase, but suppresses the formation of SmA* phase. In compounds II(m=8-12), as the achiral alkyl chains are extended, the transition temperatures of SmC*-Cr are increased but the temperatures ranges of SmC* phase are decreased.
The compounds with lateral fluoro substituents in the phenyl ring of core could affect the formation of the mesophase, lower the transition temperatures, melting points and clearing points. Moreover, the phenyl ring with 2-fluoro substituent possesses higher transition temperature than that with 3-fluoro substituent, suggesting that molecular broadening minimized due to the sterically shielded of 2-flueoro substituent.
The electro-optical responses of chiral compound II(m=11) in the SmC* phase displayed V-shaped switching behavior, chiral compound III(m=9) in the SmCA* phase displayed U-shaped and double hysteresis loop switching behavior. Comparison of compounds I,II, III(m=8~12) clearly show that the compounds I(m=8-12) have higher Ps values than the compounds II, III(m=8-12), suggesting that compounds with the lateral fluoro substituents could suppress the polarity of the transverse dipole. The maximum Ps values of I, II, III(m=9-12) are about 6-16 nC/cm2. The compounds III(m=8-12) with 3-fluoro substituent have higher tilt angle than the compounds I, II(m=8-12). The maximum optical tilt angle values of the compounds I, II, III (m=8-12) were between 20-30o.
TABLE OF CONTENTS
ACKNOWLEDGMENTS.............................................................III
ENGLISH ABSTRACT.............................................................IV
中文摘要.....................................................................VI
TABLE OF CONTENTS...........................................................VII
LIST OF SCHEMES..............................................................XI
LIST OF TABLES..............................................................XII
LIST OF FIGURES............................................................XIII
CHAPTER 1
INTRODUCTION..................................................................1
1.1 Overview..................................................................1
1.2 Chiral smectic phases.....................................................1
1.2.1 Chiral smectic A phase..................................................1
1.2.2 Chiral smectic C phase (ferroelectric phase)............................4
1.2.3 Antiferroelectric phase.................................................9
1.3. Motivation of study.....................................................15
CHAPTER 2
EXPERIMENTAL.................................................................18
2.1 Preparation of Materials.................................................18
2.1.1 Synthesis of 4-(4’-alkoxybiphenyl)benzoic acids, I-1(m=8∼12).........18
2.1.2 Synthesis of 2-fluoro-4-hydroxybenzoic acid, II-1......................21
2.1.3 Synthesis of 3-fluoro-4-hydroxybenzoic acid, III-1.....................21
2.1.4 Synthesis of 4-methoxycarbonyloxybenzoic acid, I-2(II-2, III-2)........22
2.1.5 Synthesis of (S)-1-methyl-2-[(2’-methoxy)ethoxy]ethanol, I-3..........22
2.1.6 Synthesis of (R)-2-(2-methoxyethoxy)propyl 4-(methoxy carbonyloxy)benzoate, I-4(II-4, III-4)...................................................23
2.1.7 Synthesis of (R)-2-(2-methoxyethoxy)propyl 4-hydroxybenzoate, I-5 (II-5, III-5).......................................................................24
2.1.8 Synthesis of (R)-4-[2-(2-methoxyethoxy)propyloxycarbornyl] phenyl 4’-alkoxybiphenyl-4-carboxylates, I-6(II-6, III-6), m= 8~12.....................25
2.2 Physical properties......................................................27
2.2.1 Chemical structure identification......................................27
2.2.2 Mesophase identification...............................................27
2.2.3 Preparation of homogenous cells........................................27
2.2.4 Alignment of liquid crystals in SSFLC Cells............................28
2.2.5 Switching behavior measurement.........................................28
2.2.6 Spontaneous polarization measurement...................................28
2.2.7 Dielectric constant measurement........................................29
2.2.8 Optical response measurement...........................................30
CHAPTER 3
RESULTS AND DISSCUSSION......................................................32
3.1 Chemical structure identification........................................32
3.2 The effect of peripheral chain length I (m=8~12).........................40
3.2.1 Transition temperatures and mesomorphic properties for the compounds I (m=8-12).....................................................................40
3.2.2 Differential scanning calorimetry (DSC) for the compounds I (m=8-12)...42
3.2.3 Switching behavior for the compounds I (m=8-12)........................46
3.2.4 Spontaneous polarization (Ps) for the compounds I (m=9-12).............46
3.2.5 Optical Tilt angle (θ) for the compounds I (m=8-12)....................47
3.2.6 Electro-optical responses for the compounds I (m=8-12..................47
3.2.7 Dielectric properties for the compounds I (m=8-12).....................48
3.3 The effect of 2-fluoro substances in the core of the molecule II(X=H,Y=F)................................................................... 54
3.3.1 Transition temperatures and mesomorphic properties for the compounds II (m= 8-12)....................................................................54
3.3.2 Differential scanning calorimetry (DSC) for the compounds II (m=8-12)..........................................................................56
3.3.3 Switching behavior for the compounds II (m=8-12).......................60
3.3.4 Spontaneous polarization (Ps) for the compounds II (m=9-12.............60
3.3.5 Optical Tilt angle (θ) for the compounds II (m=8-12)...................60
3.3.6 Electro-optical responses for the compounds II (m=8-12)................61
3.3.7 Dielectric properties for the compounds II (m=8-12)....................61
3.4 The effect of 3-fluoro substances in the core of the molecule III(X=F,Y=H)....................................................................68
3.4.1 Transition temperatures and mesomorphic properties for the compounds III (m=8-12).....................................................................68
3.4.2 Differential scanning calorimetry (DSC) for the compounds III (m=8-12)..........................................................................70
3.4.3 Switching behavior for the compounds III (m=8-12)......................74
3.4.4 Spontaneous polarization (Ps) for the compounds III (m=9-12)...........74
3.4.5 Optical Tilt angle (θ) for the compounds III (m=8-12)..................74
3.4.6 Electro-optical responses for the compounds III (m=8-12)...............75
3.4.7 Dielectric properties for the compounds III (m=8-12)...................75
3.5 A comparison of mesomorphic properties for the compounds I, II, III(m=10)...................................................................... 82
3.6 A comparison of spontaneous polarization for the compounds I, II, III(m=10).......................................................................82
3.7 A comparison of in tilt angle for the compounds I, II, III (m=10)........83
CHAPTER 4
CONCLUSIONS..................................................................87
REFERENCES...................................................................89
REFERENCES
[1]F. Reinitzer. Monatsh. Chem., 9, 421 (1888)
[2]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid
Crystals., 2(A), 3 (1998)
[3]R.B. Meyer, L. Liebert, L. Strzelecki, P. Keller. J. Phys. (Pairs) Lett.,
36, L69 (1975)
[4]A.D.L. Chandani, T. HAGIWARA, Y. Suzuki, Y. Ouchi, H. Takezoe, A. Fukuda.
Jpn. J. appl. Phys., 27, L729 (1988)
[5]A.D.L. Chandani, Y. Ouchi, H. Takezoe, A. Fukuda, K. Terashima, K.
Furukawa, A. Kishi. Jpn. J. appl. Phys., 28, L1261 (1989)
[6]E. Gorecka, A.D.L. Chanani, Y. Ouchi, H. Takezoe, A. Fukuda. Jpn. J. appl.
Phys., 29, 131 (1990)
[7]J.W. Goodby, M.A. Waugh, S.M. Stein, E. Chin, R. Pindak, J. S. Patel. J.
Am. chem. Soc., 111, 8119 (1989)
[8]L.J. Yu, H. Lee, C.S. Bak, M.M. Labes. Phys. Rev. Lett., 36, 388 (1976)
[9]N.A. Clark, S.T. Lagerwall. Appl. Phys. Lett., 36, 899 (1980)
[10]M. Yamawaki, Y. Yamada, N. Yamamoto, K. Mori, H. Hayashi, Y. Suzuki, Y.S.
Negi, T. Hagiwara, I. Kawamura, H. Orihara, Y. Ishibahsi. Jpn.
Display '89., 26 (1989)
[11]J. Johno, A.D.L. Chandani, J. Lee, Y. Ouchi, H. Takezoe, A. Fukuda, K.
Ioth, T. Kitazume. Proc. Jpn. Display., 22 (1989)
[12]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid
Crystals, 2(A)., 127-129 (1998)
[13]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid
Crystals, 2(A)., 118-119 (1998)
[14]H. Takezoe, J. Lee, A. D.L. Chandani, E. Gorecka, Y. Ouchi, A. Fukuda, K.
Terashima, K. Furukawa. Ferroelectrics., 114, 187 (1991)
[15]H. Hayashi, M. Takemura, K. Kikuchi, Y. Hijikata, H. Orihara, Y.
Ishibashi. Jpn. J. appl. Phys., 31, 3182 (1992)
[16]S. Inui, N. Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi, A.
Fukuda. J. mater. Chem., 6, 671 (1996)
[17]S.S. Seomun, T. Gouda, Y. Takanishi, K. Ishikawa, H. Takezoe, A. Fukuda.
Liq. Cryst., 26, 151 (1999)
[18]A.D.L. Chandani, Y. Cui, S.S. Seomun, Y. Takanishi, K. Ishikawa, H.
Takezoe, A. Fukuda, Liq. Cryst., 26, 167 (1999)
[19]D. Demus, J.W. Goodby, G.W. Gray, H.W. Spiess, V. Vill. Handbook of Liquid
Crystals, 2(B)., 685 (1998)
[20]T. Kitamura, A. Mukoh, S. Era. Mol. Cryst. liq. Cryst., 112, 319 (1984)
[21]T. Kitamura, A. Mukoh. Mol. Cryst. liq. Cryst., 108, 333 (1984)
[22]T.G. Adams, R. Sinta. Mol. Cryst. liq. Cryst., 177, 145 (1989)
[23]T.G. Adams, W. Cumming, R. Sinta. Mol. Cryst. liq. Cryst., 182, 257 (1990)
[24]J.W. Goodby, A.J. Slaney, C.J. Booth, I. Nishiyama, J.D. Vuijk, P.
Styring, K.J. Toyne. Mol. Cryst . liq. Cryst., 243, 231 (1994)
[25]S. Inui, T. Suzuki, N. Iimura, H. Iwane, H. Nohira. Ferroelectrics., 148,
79 (1993)
[26]A. IkedA, Y. Takanishi, H. Takezoe, A. Fukuda. Jpn. J. appl. Phys., 32,
L97 (1993)
[27]A. Fukuda, S.S. Seomun, T. Takahashi, Y. Takahashi, K. Ishikawa. Mol.
Cryst . liq. Cryst., 303, 379 (1997)
[28]S.S. Seomun, Y. Takahashi, K. Ishikawa, H. Tkezoe, A. Fukuda, C. Tanaka,
T. Fujiyama, T. Maruyama, , and S. Nishiyama. Mol. Cryst. liq. Cryst.,
303, 181 (1997)
[29]S.S. Seomun, Y. Takahashi, K. Ishikawa, H. Tkezoe, A. Fukuda. Jpn. J.
appl. Phys., 36, 3586 (1997)
[30]S.S. Seomun, T. Gouda, Y. Takahashi, K. Ishikawa, K. Ishikawa, H. Tkezoe,
A. Fukuda. L iq. Cryst., 26, 151 (1999)
[31]A.D.L. Chandani, Y. Cui, S.S. Seomun, Y. Takahashi, K. Ishikawa, H.
Tkezoe, A. Fukuda. L iq. Cryst., 26, 167 (1999)
[32]A.D.L. Chandani, Y. Cui, S.S. Seomun, Y. Takahashi, K. Ishikawa, H.
Tkezoe, A. Fukuda. Mol. Cryst. liq. Cryst., 322, 337 (1998)
[33]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 749 ( 2005)
[34]S.L. Wu, C.Y. Lin. Liq. Cryst., 32, 1053 (2005)
[35]S.L. Wu, C.Y. Lin. Liq. Cryst., 33, 537 (2006)
[36]G.W. Gary, C. Hogg, D. Lacey. Mol. Cryst. liq. Cryst., 67, 1 (1981)
[37]E. Chin, J.W. Goodby. Mol. Cryst. liq. Cryst., 141, 311 (1986)
[38]G.J. Booth, D.A. Dunnur, J.W. Goodby, K.J. Toyne. Liq. Cryst., 28, 815
(1996)
[39]K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, E. Kuze. Jpn. J. appl. Phys.,
22, L661 (1983)
[40]S. Wrobrl, W. Haase, M. Pfeiffer, L. Beresnev, T. Geelhaar. Mol. Cryst.
liq. Cryst., 212, 335 (1992)
[41]A.D.L. Chandani, T. Hagiwara, Y. Suzuki, Y. Ouchi, H. Takazoe, A. Fukuda.
Jpn. J. appl. Phys., 27, L729. (1988)
[42]J. Lee, A.D.L. Chandani, Y. Itoh, H. Takazoe, A. Fukuda. Jpn. J. appl.
Phys., 29, 1122 (1990)
[43]A. Fukuda, Y. Takahashi, T. Isozaki, K. Shikawa, H. Takezoe. J. mater.
Chem., 4, 997 (1994)
[44]Y. Chen, W.J. Wu. Liq. Cryst., 25, 309 (1998)
[45]S.L. Wu, C.Y. Lin. Liq. Cryst., 30, 471 (2003)
[46]D.D. Parghi, S.M. Kelly, J.W. Goodby. Mol. Cryst. liq. Cryst., 332, 313
(1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 58. 陳豐祥,〈「整合題」在歷史科教學評量上的理論與實際〉,《歷史教育》,創刊號,民國86年6月,頁209-226。
2. 21. 杜宜展,〈影響學生發問行為之因素〉,《教育資料文摘》,39卷6期,民國86年6月,頁165-180。
3. 55. 陳伯璋,〈九年一貫新課程綱要修訂的背景、內涵及特性〉)《教育研究資訊》,7卷1期,民國88年1月,頁1-13。
4. 44. 胡鍊輝,〈國小學生家庭作業簿的研究〉,《國教世紀》,18卷12期,民國72年,頁16-19。
5. 54. 陳怡君,〈「家長參與學校教育」影響之探究〉,《人文及社會學科教學通訊》,第13卷5期,民國92年2月,頁50-61。
6. 53. 陳正義,〈學生家庭作業電腦化意義及應用〉,《師說》,170期,民國91年10月,頁29-31。
7. 43. 韋煙灶、陳秋月、黃應婕、張淑娟、黃菁秀、鄭淑惠、曹美華,〈港南家鄉探訪--地理科戶外教學「學習單」的編製與教學活動之實施〉,《地理教育》,25期,民國88年6月,頁13-30。
8. 51. 殷靜玉,〈對課堂提問的反思〉,《歷史月刊》,193期,民國93年2月,頁122-123。
9. 50. 唐遠華,〈史料教學對歷史思維能力發展的嘗試一個對「寄自疆場家書」作業設計之教學回應〉,《清華歷史教學》,第9期,清華大學歷史教學網:http://teaching.hist.nthu.edu.tw/Periodical/。
10. 49. 徐美蓮,〈如何指導學生利用資料收集學習社會科〉,《國教天地》,99期,民國82年,頁27-30。
11. 48. 徐美蓮,〈學生自訂作業的內涵及其實施方式〉,《國教天地》,82期,民國78年,頁11-13。
12. 33. 周紅美,〈一種新嚐試--學習單的設計與教學〉,《中山女高學報》,2期,民國91年12月,頁61-70。
13. 47. 高慧芬,〈以展示為基礎的博物館教育活動規劃及評量設計〉,《博物館學季刊》,15卷2期,民國90年,頁91-104。
14. 46. 高強華,〈論教學專業與教科書的選用〉,《教師天地》,88期,民國86年,頁14-17。
15. 41. 范瑞祝,〈對學習單的看法〉,《竹縣文教》,24期,民國90年12月,頁75-78。