跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭繼元
研究生(外文):Chi-Yuan Kuo
論文名稱:以鋁-鎳-銅複合催化劑氣相成長奈米碳纖維之研究
論文名稱(外文):Growth of carbon nanofibers by catalytic chemical vapor deposition using Al-Ni-Cu composite catalysts
指導教授:曾信雄曾信雄引用關係
指導教授(外文):Shinn-Shyong Tzeng
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:129
中文關鍵詞:奈米碳纖維
外文關鍵詞:carbon nanofiber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
利用化學氣相沉積法由鋁-鎳-銅為觸媒催化裂解含碳氣氛製備奈米碳纖維,針對二組不同反應氣氛(甲烷/氫氣及甲烷/氮氣)進行討論。此二組不同反應氣氛製程中,以每50℃為間隔而於650℃-750℃下進行催化裂解反應,後續製程分析中發現,在此溫度範圍間皆以合成溫度於700℃時可得到產率較高且纖維直徑較細之最佳條件;TEM影像的觀察中則發現到在此所生長之奈米碳纖維以類竹節狀型態出現。
將所製備之纖維進行鹽酸酸洗以去除纖維中所含之金屬觸媒,以3M鹽酸酸洗0.5克之700℃下甲烷/氫氣所生成之纖維,可去除約30%的金屬觸媒,在SEM影像中碳纖維生長方向頂端則觀察到觸媒脫落所留下之開口。
選用甲烷/氫氣與甲烷/氮氣二製程中於700℃下生成之碳纖維進行熱處理,熱處理的溫度範圍分佈於1600℃-2400℃,由TEM影像則發現在奈米碳纖維之外表面出現粗糙面。對於甲烷/氫氣製程之纖維,其經過熱處理(2400℃)後纖維外表面石墨層邊緣之刃平面出現環狀結構(loop structure),環狀結構在Raman光譜出現明顯2D特徵峰的強度;而於甲烷/氮氣製程之奈米碳纖維經熱處理(2400℃)後,則未觀察到明顯的環狀結構,且Raman光譜中2D特徵峰之強度相對於G特徵峰亦較弱。奈米碳纖維經高溫熱處理2400℃後其金屬觸媒也隨之氣化逃逸,而於1600℃-2000℃間金屬觸媒發生相變化生成AlNi3與AlNi相。
We synthesized carbon nanofibers(CNFs) by catalytic chemical vapor deposition(CVD) using an Al-Ni-Cu composite catalyst. Two different mixture gases (CH4/H2 and CH4/N2) were introduced as the reactants. The deposition processes were carried out at temperatures in the range of 650℃-750℃ with a 50℃ interval. We found that 700℃ is the most suitable synthetic temperature to produce high yield and thinner CNFs with Al-Ni-Cu catalysts. HRTEM showed that the as-grown CNFs have a bamboo-like structure.
A 3M HCl acid solution was used to remove the catalysts from the as-grown CNFs. TGA results showed that this process could remove 30wt% catalysts from 0.5g CNFs(700℃, CH4/H2). SEM images showed CNFs lost the catalysts from the tips and leave cavity at the tip position.
Heat treatments were also performed on CNFs which were produced using both CH4/H2 and CH4/N2 atmospheres at 700℃. At the annealing temperature of 2400℃, the loop structure was observed in HRTEM for CNFs produced by a CH4/H2 mixture gas. With the heat treatments, the Raman spectrums of CNFs showed clearly 2D band that have a stronger intensity in comparison with the G band. No obvious loop structure has been seen on the surface of CNFs which were produced by a CH4/N2 atmosphere and were heat-treated at 2400℃. And the intensity of 2D band is also weaker than that of G band. Metal particles were evaporated after a 2400℃ heat treatment. XRD data showed that the composite catalyst transformed into AlNi3 and AlNi phases during 1600℃-2000℃.
TABLE OF CONTENTS

CHINESE ABSTRACT........................................................................................................I
ENGLISH ABSTRACT.......................................................................................................II
TABLE OF CONTENTS...................................................................................................III
LIST OF FIGURES............................................................................................................VI
LIST OF TABLES..............................................................................................................XI
I. Introduction.......................................................................................................................1
II. Literature review..............................................................................................................2
2.1 Introduction of carbon nanofiber..................................................................................2
2.2 The choice of catalyst...................................................................................................4
2.3 Feitknecht compound...................................................................................................5
2.4 Growth mechanism of carbon nanofibers....................................................................9
2.5 High temperature heat treatment of carbon nanofibers..............................................11
III. Experimental................................................................................................................13
3.1 Preparation of catalysts..............................................................................................13
3.2 Synthesis of carbon nanofibers...................................................................................16
3.3 Heat treatment of carbon nanofibers..........................................................................18
3.4 Characterization..........................................................................................................18
3.4.1 X-ray diffraction (XRD)......................................................................................18
3.4.2 Thermogravimetric analysis (TGA)....................................................................19
3.4.3 Raman spectrum..................................................................................................19
3.4.4 Field Emission Scanning Electron Microscope (FESEM)..................................19
3.4.5 Transmission electron microscope(TEM)...........................................................19
IV. Results and discussion..................................................................................................21
4.1 Reduction process.......................................................................................................21
4.2 Synthesis of CNFs by Al-Ni-Cu catalyst....................................................................22
4.2.1 Use of CH4/H2 as reactant gases..........................................................................22
4.2.1.1 SEM..............................................................................................................22
4.2.1.2 XRD..............................................................................................................30
4.2.1.3 Raman...........................................................................................................32
4.2.1.4 TGA..............................................................................................................35
4.2.1.5 TEM..............................................................................................................37
4.2.2 Use of CH4/N2 as a reactant gases.......................................................................42
4.2.2.1 SEM..............................................................................................................42
4.2.2.2 BEI................................................................................................................46
4.2.2.3 XRD..............................................................................................................48
4.2.2.4 TGA..............................................................................................................50
4.2.2.5 Raman...........................................................................................................51
4.2.2.6 TEM..............................................................................................................54
4.3 Purification of CNFs..................................................................................................58
4.3.1 SEM and BEI Image observation........................................................................58
4.3.2 XRD and TGA analyses......................................................................................58
4.4 Heat treatment of CNFs..............................................................................................62
4.4.1 CNFs produced by CH4/H2 reactant gases..........................................................62
4.4.1.1 SEM..............................................................................................................62
4.4.1.2 BEI................................................................................................................62
4.4.1.3 XRD..............................................................................................................71
4.4.1.4 Raman...........................................................................................................75
4.4.1.5 TGA..............................................................................................................79
4.4.1.6 TEM..............................................................................................................81
4.4.2 CNFs produced by CH4/N2 reactant gases..........................................................85
4.4.2.1 SEM..............................................................................................................85
4.4.2.2 BEI................................................................................................................91
4.4.2.3 XRD..............................................................................................................97
4.4.2.4 Raman.........................................................................................................101
4.4.2.5 TGA............................................................................................................105
4.4.2.6 TEM............................................................................................................106
V. Conclusions..................................................................................................................109
References........................................................................................................................110
References
[1]Edwards BC. The space elevator. NIAC Phase II Final Report, 2003.
[2]Baird T, Fryer JR, Grant B. Structure of fibrous carbon. Nature 1971;233:329-330.
[3]Boehm HP. Carbon from carbon monoxide disproportion on nickel and iron catalysts:
morphological studies and possible growth mechanisms. Carbon 1973;11:583-590.
[4]Baird T, Fryer Jr, Grant B. Carbon formation on iron and nickel foils by hydrocarbon
pyrolysis-reaction at 700℃. Carbon 1974;12:591-602.
[5] Tzeng SS, Wang PL, Hung KH. An International Conference on Carbon, Providence, Rhode Island, USA,2004;145.
[6]Dai HG. Nanotube Growth and Characterization. In: Dresselhaus MS, Dresselhaus G, Avouris Ph, eds. Carbon Nanotubes synthesis structure properties and applications 2001;29-53 .
[7] Tibbetts GG. Why are carbon filaments tubular. J Cryst Growth 1984;66:632-638
[8]Baker RTK, Harris PS. The formation of filamentous carbon. In: Walker PL, Thrower PA, eds. Physics and Chemistry of Carbon, vol 14, New Yoker; Marcel Dekker, 1978;83-165.
[9] Dai HG, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Letts 1996;260:471-475.
[10] Baker RTK, Harris PS, Thomas RB, Waite RJ. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Cataly 1993;30:86-95.
[11] Amelinckx S, Zhang XB, Bernaerts D, Zhang XF, Ivanov V, Nagy JB. Science 1995;265:635.
[12] Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Fudala A, Lucas AA. Catalytic synthesis of carbon nanotubes using zeolite support. Zeolites 1996;17:416-423.
[13] Kiang CH, Goddard III WA. Polyyne ring nucleus growth model for single-layer carbon nanotubes. Phys Rev Lett 1996;76:2515-2518.
[14]Guo T, Nikolaev P, Thess A, Colbert D T, Smalley RE. Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 1995;243:49-54.
[15]Baker RTK. Electron microscopy studies of the catalytic growth of carbon filaments. In: Figueiredo JL, Bemardo CA, Baker RTK, eds. Carbon fibers filaments and composites 1990;405-439.
[16]Shaikhutdinov SK, Avdeeva LB, Goncharova OV, Kochubey DI, Novgorodov BN, Plyasova LM. Coprecipitated Ni-Al and Ni-Cu-Al catalysts for methane decomposition and carbon deposition I. Genesis of calcined and reduced catalysts. Appl Catal A 1995;126:125-139.
[17]Avdeeva L B, Goncharova OV, Kochubey DI, Zaikovskii VI, Plyasova LM, Novgorodov BN, Shaikhutdinov SK. Coprecipitated Ni-alumina and Ni-Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Appl Catal A 1996;141:117-129.
[18]Bravo-Suarez JJ, Paez-Mozo EA, Oyama ST. Models for the estimation of thermodynamic properties of layered double hydroxides: application to the study of their anion exchange characteristics. Quim Nova 2004;27:574-581.
[19]Feitknecht W, Gerber M. Helv Chim Acta 1942;25:131.
[20]Krishnankutty N, Rodriguez NM, Baker RTK. Effect of copper on the decomposition of ethylene over an iron catalyst. J of Catal 1996;158:217-227.
[21]Li YD, Chen JL, Chang L. Catalytic growth of carbon fibers from methane on a nickel-alumina composite catalyst prepared from Feitknecht compound precursor. Appl Catal A 1997;163:45-57.
[22]Li YD, Chen JL, Chang L, Qin YN. The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared from Feitknecht compound precursor. J of Catal 1998;178:76-83.
[23]Li YD, Chen JL, Ma YM, Zhao JB, Qin YN, Chang L. Formation of bamboo-like nanocarbon and evidence for quasi-liquid state of nanosized metal particles at moderate temperatures. Chem Commun 1999:1141-1142.
[24]Chen JL, Li YD, Ma YM, Qin YN, Chang L. Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions. Carbon 2001;39:1467-1475.
[25]Piao L, Li YD, Chen JL, Chang L, Lin Jerry YS. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catalysis Today 2002;74:145-155.
[26]Cale TS, Richardson JT. In-situ characterization of Ni-Cu/SiO2 catalysts. J Catal 1983;79:378-389.
[27]Alzamora LE, Ross JRH, Kruissink EC, van Rejen LL. Coprecipated nickel-alumina catalysts for methanation at high temperature. Part II. Variation of total and metallic areas as a function of sample composition and method of pretreatment. J Chem Soc Faraday Trans I 1981;77:665-681.
[28]Wright CJ, Windsor CG, Puxley DC. Paracrystallinity in a coprecipitated nickel/alumina catalyst. J Catal 1982;78:257-261.
[29]Puxley DC, Kitchener IJ, Komodromos C, Purkgns ND. Stud Surf Sci Catal 1983;16:237.
[30]Baker RTK. Electron Microscopy Studies of The Catalytic Growth of Carbon filaments, Carbon Fiber Filaments and Composites, NATO ASI Series E, Applied sciences vol 177.
[31]Tibbetts GG. Physical modeling of carbon filament growth. In: Figueiredo JL, Bernardo CA, Baker RTK, Huttiner KJ, eds. Carbon Fiber Filaments and Composites 1990;525.
[32]Fischebach DB. The kinetics and mechanism of graphitization. In: Walker PL, editor. Chemistry and physics of carbon, vol 7, New York; Marcel Dekker, 1971;1-97.
[33]Ci LJ, Zhu HW, Wei BQ, Xu CL, Liang J, Wu DH. Graphitization behavior of carbon nanofibers prepared by the floation catalyst method. Materials Lett 2000;43:291-294.
[34]Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS. Microstructural changes induced in “stacked cup”carbon nanofibers by heat treatment. Carbon 2003;41:1941-1947.
[35]Endo M, Lee BJ, Kim YA, Kim YJ, Muramatsu H, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS. Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. New Journal of Physics No.5 2003:121.1-121.9.
[36]Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M. Graphite polyhedral crystals. Science 2000;290:317-320.
[37]Tan PH, Dimovski S, Gogotsi Y. Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones one contribution of 13 to a theme “Raman spectroscopy in carbons: from nanotubes to diamond”. Phil Trans R Soc Lond A 2004;362:2289-2310.
[38]Holstein WL. The roles of ordinary and Soret diffusion in the metal-catalyzed formation of filamentous carbon. J of Catal 1995;152:42-51.
[39] Pinheiro JP, Gadelle P. J Phys Chem Solids 2001;62:1015.
[40] Pinheiro JP, Gadelle P, Jeandey C, Oddou JL, J Phys Chem Solids 2001;62:1023.
[41] Robertson J. Amorphous carbon. Advances in Physics 1986;35:317-374.
[42] Saito Y. Nanoparticles and filled nanocapsules. Carbon 1995;33:979-988.
[43] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition. J Cryst Growth 1976;32:335-349.
[44]Louchev OA. Formation mechanism of pentagonal defects and bamboo-like structures in carbon nanotube growth mediated by surface diffusion. Phys Stat Sol 2002;193:585-596.
[45]Terrones H, Hayashi T, Munoz-Navia M, Terrones M, Kim YA, Grobert N, et al. Graphitic cones in palladium catalysed carbon nanofibres. Chem Phys Letts 2001;343:241-250.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top