跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李榮輝
研究生(外文):Jung-hui Lee
論文名稱:空中巴士A300-600PW4158引擎維修方法改善之研究
論文名稱(外文):A STUDY ON THE IMPROVEMENT TO PW4158 ENGINE OF A300-600 MAINTENANCE METHOD
指導教授:賴光哲
指導教授(外文):Guang-Jer Lai
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:92
中文關鍵詞:引擎
外文關鍵詞:FADECEEC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
目前的商用客機主要是以FADEC(full authority digital engine control )發動機來提供飛機操作時所需的推力.此FADEC的主要功能是透過EEC(electronic engine control)來控制發動機的推力和保持發動機的最佳性能.而裝置在發動機上的EEC(electronic engine control)則藉由接收來至發動機本身或飛機其他系統的訊號來控制發動機及避免發動機在運轉中產生失速或喘震現象.此外EEC也具備了監控發動機在運轉過程中發動機系統失效及故障的能力.
但在實際使用PW4158 FADEC引擎的經驗中卻發現,由於缺乏正確的回饋信號,可能導致設計用於控制壓縮段及渦輪段之2.5放氣系統、可變角度葉片系統及渦輪機匣冷卻系統等三個系統發生故障時, EEC無法探測到這些機械元件失效時之狀況.其原因乃由於這些系統的回饋訊號都裝置在控制唧筒上,使得當唧筒下游相關機械元件失效時, EEC將便無法接受到回饋信號而造成無法偵測之系統故障.而此EEC無法探測到的系統故障也將造成駕駛艙無法顯示該系統失效時相關的警示,這類問題導致維護人員很難在故障排除中找出故障的根本原因.
此篇論文即針對A300-600R PW4000 FADEC發動機失效時,駕駛艙無法偵測到的故障問題,利用發動機的FADEC ground test of the engine control system actuators測試方法來測試壓縮機和渦輪中2.5放氣系統 ,可變角度葉片系統及渦輪機匣的冷卻系統等三個系統,來找.出EEC所無法偵測到的故障情形.並利用實驗結果找出和上述三個系統有關之EEC無法偵測到的故障附件.最後採用R.I.I (required inspection item), D.V.I (detail visual inspection) and PTR (practical training record)等三個維護方法,來提供複檢程序、詳細的檢查程序及完善的訓練課程以改善現有的發動機維修計畫,並藉由這些改善方法來減少因此類無法偵測的機械故障所造成發動機失速或失效之風險.
Today’s commercial aircraft mainly uses FADEC engine to provide thrust power for aircraft operation. The main function of FADEC is to control the engine thrust power and maintains optimal performance via EEC. The EEC, which is installed on engine, receives signals from engine or airframe system to control engine and to prevent engine from stalling or surging. Moreover, the monitor system of EEC is also capable of detecting malfunction or failure condition during engine operation.
In operating experience of PW4158 FADEC engine, it is shown that 2.5 bleed system, stator vane actuator system and turbine case cooling system, which are designed to control compressor and turbine section, could cause EEC unable to identify the mechanical failure due to lack of correct feedback. Because the feedback sensor is installed at the actuator, the EEC is unable to detect failure of downstream mechanism of actuator if the related components are damaged. The undetectable situation of EEC will lead to non-cockpit warning effect and cause difficulties for maintenance personnel in determining the root causes of failure in trouble shooting procedure.
This thesis aims to focus on the undetectable failure of A300-600R PW4000 FADEC engine in the cockpit, and to carry out 2.5 bleed, SVA and TCC system experiment by mean of FADEC ground test of the engine control system actuators. Subsequently, use the test result of engine actuator test to figure out the undetectable failure related to above-mentioned systems. Finally, the proposals of R.I.I (required inspection item), D.V.I (detail visual inspection) and PTR (practical training record) are built into the maintenance system to provide duplicate inspection procedure 、detail inspection procedure and thorough training course to improve current maintenance plan and reduce risk of engine surge or malfunction due to undetectable mechanical failure.
TABLE OF CONTENTS
ABSTRACT ii
摘要 iii
Acknowledgements v
誌謝 vi
Table of contents viii
List of Figures xii
List of tables xiv
CHAPTER 1 Introduction 1
1.1 Project background 1
1.2 Aim and objectives of the projects 2
1.3 Research plan 4
1.4 Current problem of PW4158 5
CHAPTER 2 Functions of ECAM and FADEC 7
2.1 A300-600 ECAM system architecture 7
2.2 ECAM system operation 9
2.2.1. Normal configuration (without aircraft systems failure) 10
2.2.2. Abnormal or emergency configuration 10
2.3 ECAM component location and function 11
2.4 ECAM basic principles 13
(1) Flight compartment _lights out_ philosophy 13
(2) Detection sequence 13
(a) Lights 13
(b) CRT displays 14
(c) Aural warnings 15
(3) ECAM system display operation (refer to figure 2.6 and 2.7) 15
2.5 Warning definition 17
2.5.1 Types of warnings 17
(a) Independent failure 17
(b) Primary failure 18
(c) Secondary failure 18
2.5.2 Warning levels 19
(a) Level 3 19
(b) Level 2 19
(c) Level 1 20
(d) Level 0 20
2.5.3 Warning inhibition 20
2.5.4 Clear and recall function 21
2.5.5 Without any recall action, a cleared warning can be redisplayed 21
2.5.6. MASTER lights and aural NORM cancel function 21
2.6 Aerodynamic stations at the engine 21
Station 2: 21
Station 2.5: 22
Station 2.9 22
Station 3 22
Station4 22
Station 4.95 22
2.7 PW4000 FADEC system 23
2.8 FADEC system interface with airframe 25
2.9 FADEC system interface with engine 26
2.10 Functions 27
2.11. Power setting 29
2.12. Fault isolation and identification 29
2.13 FADEC warning system 30
2.14 FADEC failure message 30
2.14.1 Overspeed 31
2.14.2 Alternate mode reversion 32
2.14.3 Reverser in flight 33
2.14.4 FADEC channel A (or B) fault 34
2.14.5 FADEC minor fault 35
2.14.6 Throttle lever position fault 36
CHAPTER 3 Experiment and analysis 37
3.1 FADEC ground test 37
3.1.1 Test procedures 38
3.1.2 FADEC maintenance word and status word 41
3.2 Engine 2.5 bleed system 50
3.2.1 General description 50
3.2.2 Operation (Ref. Fig.3.2) 50
3.2.3 Test result of 2.5 bleed valve 53
3.3. SVA system 54
3.3.1. General (Ref. Fig. 3.4) 54
3.3.2. Description and operation (Ref. Fig. 3.4) 54
3.3.3. Test result of SVA 58
3.4 TCC system 59
3.4.1. General 59
3.4.2 Turbine case cooling system (Ref. Fig. 3.6, 3.7) 60
3.4.3.Test result of TCC 63
CHAPTER 4 Solution and discussion 65
4.1 Visual inspection 65
4.1.1 2.5 bleed system 66
4.1.2 SVA system 67
4.1.3 TCC system 68
4.2 RII program 70
4.3 PTR training 71
4.3.1 Summary of abbreviations and classifications used in this course 71
4.3.2 Classification 72
4.3.3 Effective PTR syllabus 73
CHAPTER 5 Conclusion and future work 74
REFERENCE 76


List of Figures
Figure 1.1 Research plan 5
Figure 1.2 Operation feature of current problem 6
Figure 2.1 ECAM system architecture 7
Figure 2.2 ECAM system display 9
Figure 2.3 ECAM component locations 11
Figure 2.4 Basic function of ECAM component 12
Figure 2.5 ECAM warning and control panel 13
Figure 2.6 ECAM system display 1_show parameters of relatd system 16
Figure 2.7 ECAM system display 2_show parameters of relatd system 17
Figure 2.8 ECAM Independent failure 17
Figure 2.9 ECAM Primary failure 18
Figure 2.10 ECAM secondary failure 18
Figure 2.11 Engine station 22
Figure 2.12 FADEC system architecture 23
Figure 2.13 FADEC control system 26
Figure 2.14 FADEC interface 27
Figure 2.15 Engine overspeed messange 31
Figure 2.16 Engine alternate mode reversion messange 32
Figure 2.17 Engine reverser in flight messange 33
Figure 2.18 Engine FADEC channel A (or B) fault messange 34
Figure 2.19 Engine FADEC minor fault messange 35
Figure 2.20 Engine throttle lever position fault messange 36
Sketch 3.1 BITE test procedure_1 39
Sketch 3.2 BITE test procedure_2 40
Sketch 3.3 BITE test procedure_3 41
Figure 3.1 Bite result of FADEC ground test 49
Figure 3.2 Engine 2.5 bleed system 51
Figure 3.3 Mechanical connection of 2.5 bleed system 52
Figure 3.4 Stator vane actuator system 56
Figure 3.5 Feedback sensor of stator vane actuator system 57
Figure 3.6 Components of turbine case cooling system 61
Figure 3.7 Turbine cooling system 62
Figure 4.1 Turbine case cooling system 68
Figure 4.2 Turbine case cooling air valve actuator 69
Figure 4.3 Assessment of required inspection item 70
Figure 4.4 Syllabus of practical training record 73


LIST OF TABLES
Table 1.1 Aircraft system 2
Table 1.2 Aircraft maintenance manual list 3
Table 2.1 Light color code 14
Table 2.2 CRT color code 14
Table 3.1 Circuit breaker locations 38
Table 3.2 FADEC maintenance word No.1 43
Table 3.3 FADEC maintenance word No.2 44
Table 3.4 FADEC maintenance word No.3 45
Table 3.5 FADEC maintenance word No.4 46
Table 3.6 FADEC maintenance word No.5 47
Using the following table, convert the word hexadecimal value into binary form: 48
Table 3.7conversion table 48
Table 3.8 failure analysis of 2.5 bleed valve 53
Table 3.9 failure code of 2.5 bleed valve 54
Table 3.10 Failure analysis of stator vane actuator 58
Table 3.11 Failure code of stator vane actuator 59
Table 3.12 Failure analysis of turbine cooling case 63
Table 3.13 Failure code of turbine cooling case 64
[1]Yamane,H; Kaneko,M; Oyobe,T; SICE’95.Proceedings of the 34th SICE Annual Conference, International Session papers 26-28 July 1995 page(s):1515-1520.
[2]Hjelmgren,K.; Svensson,S.; Hannius,O.; Reliability and Maintainability Symposium, 1998.Proceedings,Annual 19-22.Jan 1998 Page(s):401-407.
[3]Kulikov,G.G.;Arkov.V.Y.;Breikin,T.V.;Control’96,UKACC International Conference on (conf.publ.No.427) Volume 1,2-5 Sept.1996 page(s):120-124 VOL.1
[4]UKACC International Conference on control ’96 2-5 September 1996,Conference publication No.427 IEE1996.
[5]W.C. Merrill, “Sensor Failure Detection for Jet Engineers Using Analytical Redundancy, ” NASA TM 83695,1984.
[6]A.S. Willsky, “A Survey of Design Methods for Failure Detection in Dynamic Systems, ” Automatica, vol.12, pp. 601-611,Pergamon Press,1976.
[7]A300-622R Aircraft Maintenance Manual
[8]A300-622R Trouble Shooting Manual
[9]PW4000 Training Manual
[10]A300-622R Aircraft Schematic Manual
[11]China Airlines Quality Regulation
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top