跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 13:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾國屏
研究生(外文):Gwo-Ping Jong
論文名稱:急性心肌梗塞病人預後相關因素之研究
論文名稱(外文):Study on prognosis and related factors in patients with acute myocardial infarction
指導教授:周碧瑟周碧瑟引用關係
指導教授(外文):Pesus Chou
學位類別:博士
校院名稱:國立陽明大學
系所名稱:公共衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
畢業學年度:94
語文別:英文
論文頁數:155
中文關鍵詞:鏡相反應膠蛋白分解酵素-9膠蛋白分解酵素-2心臟衰竭急性心肌梗塞急性左主幹支冠狀動脈阻塞ST節下降
外文關鍵詞:Reciprocal changeMMP-9MMP-2heart failureAcute myocardial infarctionAcute left main occlusionST segment depression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:741
  • 評分評分:
  • 下載下載:173
  • 收藏至我的研究室書目清單書目收藏:1
心臟血管疾病是全世界引起死亡最主要的疾病,估計在2001年全球三分之一﹝一千六百六十萬﹞的死因為心臟血管疾病。在台灣,台北市2004年超過50%的心臟血管死因是冠狀動脈心臟病﹝含急性心肌梗塞﹞所引起。雖然醫學的進步可以在急性期給予血栓溶解劑或直接做氣球擴張術,但其院內高死亡率仍然是一重要課題。此篇論文我們以醫院最近幾年的臨床資料有關於急性心肌梗塞患者急性期兩個因子的探測,是否影響預後,以期早期診斷、早期預防、給予病患最好的治療、以收事半功倍之效。
第一個研究,我們主要認定急性心肌梗塞一開始發作時的12-導程心電圖ST節下降”鏡相反應”可以辨識為一急性左主幹支冠狀動脈阻塞。從2000年1月至2004年12月,我們收集61 位急性心肌梗塞直接做氣球擴張術的病患,其中18 位為急性左主幹支冠狀動脈阻塞,43 位為急性左前降支近側端冠狀動脈阻塞。結果呈現急性左主幹支冠狀動脈阻塞的病患比急性左前降支近側端冠狀動脈阻塞的病患在心電圖aVF,V2,V3,V4,V5,和V6導程有較高比率的ST節下降”鏡相反應”。逐步線性多變量鑑別分析法顯示ST節下降”鏡相反應”在aVF,V2,和V4 導程可以鑑別為一急性左主幹支冠狀動脈阻塞。我們結論急性心肌梗塞一開始發作時的12-導程心電圖V2,V4和aVF 導程ST節下降”鏡相反應”是一重要急性左主幹支冠狀動脈阻塞預測因子。
第二個研究是在調查急性心肌梗塞後併發心臟衰竭過程中膠蛋白分解酵素-2 (MMP-2) 和 -9的蛋白量表現及血中濃度。我們收集28 位急性心肌梗塞無心臟衰竭病人( Killip I)(A組)、27 位急性心肌梗塞併心臟衰竭病人 (Killip II-III)(B組) ,利用ELISA及Zamograpgy等實驗方法,檢查血清中膠蛋白分解酵素-2和MMP-9的蛋白量表現及血中濃度,來探討心肌梗塞後併發心臟衰竭過程中,上列因子之濃度變化,藉以了解其可能扮演的角色。結果發現在急性心肌梗塞併心臟衰竭病人中MMP-9有明顯增加(p<0.01) ,而MMP-2在兩組卻無明顯增加。高MMP-9血中濃度和發炎及心肌梗塞的範圍大小無關,而其真正機轉有待更進一步研究。我們結論MMP-9的蛋白量表現及血中濃度增加不僅為急性心肌梗塞後發生心臟衰竭的新指標,也提供此種疾病治療的可能病理機轉。
Cardiovascular disease (CVD) is one of the leading causes of death and disability worldwide. CVD accounted for a third (16.6 million) of all global deaths in 2001. In Taiwan, over 50% of CVD deaths are due to coronary heart disease including of acute myocardial infarction (AMI) at Taipei city in 2004. Despite the appearance in clinical practice of modern treatment modes as thrombolysis and primary percutaneous coronary intervention, in-hospital mortality from AMI remains an important problem. In this paper we present recently clinical data concerning risk stratification in the acute phase of myocardial infarction in our hospital, two factors affecting the prognosis.

The first study, we aimed to determine the reciprocal ST segment depression of 12-lead electrocardiogram (ECG) associated with acute left main coronary artery (LMCA) occlusion. From January 2000 to December 2004, we selected 61 patients who underwent emergency percutaneous coronary intervention due to AMI associated with LMCA (n=18) and left anterior descending coronary artery (LADCA) (n=43) proximal lesion were selected. Lead aVF, V2, V3, V4, V5, and V6 reciprocal ST segment depression occurred with significantly higher incidence in the LMCA group than in the LADCA group. Stepwise linear multivariate discriminant analysis indicated that ST segment depression in leads aVF, V2, and V4 could distinguish the LMCA group from the LADCA group. We concluded that reciprocal ST segment depression of 12-lead ECG in leads V2, V4 and aVF is an important predictor of acute LMCA occlusion.

The second study is to investigate the serum concentrations and activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 in the developing heart failure from post AMI patients. Twenty eight patients with AMI without heart failure (Killip I) (group A; compensated) and twenty seven AMI patients with heart failure (Killip II-III) (group B; decompensated) were collected to evaluate the serum levels and activities of MMP-2 and MMP-9 by ELISA and Zymography, respectively. It was observed that the both serum levels and activities of MMP-9 significantly increased (P < 0.01) in decompensated group compared to compensated group, but there was no significant difference of serum MMP-2 levels and activities between two groups. The highly elevated serum MMP-9 concentration of decompensated patients is not related with inflammatory or localized infarct area of myocardium and the real mechanisms remain to be revealed. We suggest that the increase of MMP-9 levels and activity may be used as a new marker to diagnose the development of heart failure in patients with post MI, and provide the therapeutic implications in the future.
ABSTRACT (含 中文摘要) -------------------------------------5
TABLES LIST------------------------------------------------------10
FIGURES LIST-----------------------------------------------------11

1. INTRODUCTION
1.1 Background------------------------------------------------12
1.2 Study Structure--------------------------------------------15
1.3 The Aim of This Study-----------------------------------17

2. LITERATURE REVIEW
2.1 Epidemiology of AMI------------------------------------18
2.2 Prognostic Factors in AMI-------------------------------20
2.3 Initial ECG Presentation of AMI in Patients with Left Main Lesion------------------------------------------------30
2.4 Matrix Metalloproteinases in Patients with AMI------32

3. MATERIAL AND METHODS
3.1 Retrospective Study-------------------------------------35
3.2 Prospective Study---------------------------------------38

4. RESULTS
4.1 Retrospective Study-------------------------------------42
4.2 Prospective Study---------------------------------------49

5. DISCUSSIONS
5.1 Retrospective Study------------------------------------55
5.2 Prospective Study--------------------------------------60
5.3 Future Studies of AMI---------------------------------63

6. CONCLUSIONS---------------------------------------------65

7. REFERENCES-----------------------------------------------66

8. APPENDIX
8.1 Int Heart J 2005; 46(1): 57-68. -----------------------90
8.2 Chin J Physiol 2006; 49(2): 104-109. -------------102
8.3 Int Heart J 2006; 47(1): 13-20. ---------------------108
8.4 Int Heart J 2006; 47(4): (in press)------------------116
8.5 Powerpoint File of Oral Presentation--------------127
8.6 Personal Certification-National---------------------148
8.7 Personal Certification-International----------------151
8.8 Personal Honor----------------------------------------153
1. Ezzati M, Hoorn SV, Rodgers A, et al. Estimates of global and regional potential health gains from reducing multiple major risk factors. Lancet 2003; 362: 271-80.
2. Lopez-Candales A. Cardiovascular diseases: a review of the Hispanic perspective. Awareness is the first step to action. J Med 2002; 33(1-4): 227-45.
3. Jessup M, Brozena S. Heart failure. New Engl J Med 2003; 348: 2007-18.
4. http://www.doh.gov.tw/statistic/index.htm (Chinese)
5. Spiecker M, Erbel R, Rupprecht HT, et al. Emergency angioplasty of totally occluded left main coronary artery in acute myocardial infarction and unstable angina pectoris: institutional experience and literature review. Eur Heart J 1994; 15: 602-7.
6. Chieffo A, Stankovic G, Bonizzoni E, et al. Early and mid-term results of drug-eluting stent implantation in unprotected left main. Circulation 2005; 111: 791-5.
7. Yaaji H, Iwasaki K, Kusachi S, et al. Prediction of acute left main coronary artery obstruction by 12-lead electrocardiography: ST segment elevation in lead aVR with less ST segment elevation in lead V1. J Am Coll Cardiol 2001; 38: 1348-54.
8. Hori T, Kurosawa T, Yoshida M, et al. Factors predicting mortality in patients after myocardial infarction caused by left main coronary artery occlusion: significance of ST segment elevation in both aVR and aVL leads. Jpn Heart J 2000; 41: 571-81.
9. Lozano I, Herrera C, Moris C, et al. Drug-Eluting stents in patients with left main coronary lesion who are not candidates for surgical revascularization. Rev Esp Cardiol 2005; 58: 145-52.
10. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: experimental observations and clinical implications. Circulation 1990; 81: 1161-72.
11. Jugdutt BI. Prevention of Ventricular remodeling post myocardial infarction: timing and duration of therapy. Can J Cardiol 1993; 9: 103-14.
12. Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen Matrix: when is enough enough? Circulation 2003; 108: 1395-1403.
13. Nishikawa N, Yamamoto K, Sakata Y. Differential activation of Matrix metalloproteinases in heart failure with and without ventricular dilation. Cardiovasc Res 2003; 57: 766-74.
14. Takahashi S, Barry AC, Factor SM. Collagen degradation in ischemic rat hearts. Biochem J 1990; 265: 233-41.
15. Sato S, Ashraf M, Millard RW. Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 1983; 15: 261-75.
16. Caulfield JB, Borg TK. The collagen network of the heart. Lab Invest 1979; 40: 364-72.
17. Thompson MM, Squire IB. Matrix metalloproteinase-9 expression after myocardial infarction: physiological or pathological? Cardiovasc Res 2002; 54: 495-8.
18. Bakler T, Baburin A, Teesalu R, et al. Comparison of management and 30-day mortality of acute myocardial infarction in men versus women in Estonia. Acta Cardiol 2004; 59: 275-81.
19. Harrold LR, Esteban J, Lessard D, et al. Narrowing gender differences in procedure use for acute myocardial infarction: insights from the Worcester heart attack study. J Gen Intern Med 2003; 18: 423-31.
20. World Health Report 2002: Reducing risks, promoting healthy life. Geneva, World Health Organization, 2002.
21. Ryan TJ, Anderson JL, Antman EM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 1996; 28: 1328-38.
22. Herlitz J, Blohm M, Hartford M, et al. Delay time in suspected acute myocardial infarction and the importance of its modification. Clin Cardiol 1989; 12: 370-4.
23. Cohen MC, Rohtla KM, Lavery CE, et al. Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 1997; 79: 1512-6.
24. Muller JE, Tofler GH; Verrier RL. Sympathetic activity as the cause of the morning increase in cardiac events. A likely culprit, but the evidence remains circumstantial. Circulation 1995 ; 91: 2508-9.
25. Omland T, Bonarjee VV, Lie RT, et al. Neurohumoral measurements as indicators of long-term prognosis after acute myocardial infarction. Am J Cardiol 1995; 76: 230-5.
26. Lee YT, Chu SH, Huang PJ, et al. Coronary artery diseases in Taiwan. J Formos Med Assoc 1993; 92(S4): S184-99. (Chinese)
27. www.ccgh.com.tw/Ccghif/Chviewtopic.asp 2006/05/04 (Chinese)
28. Shiraishi J, Kohno Y, Yamaguchi S, et al. Acute myocardial infarction in young Japanese adults. Circ J 2005; 69: 1454-8.
29. Go AS, Iribarren C, Chandra M, et al. Statin and beta-Blocker Therapy and the Initial Presentation of Coronary Heart Disease. An Intern Med 2006; 144: 229-38.
30. Iribarren C, Tolstykh I, Somkin CP, et al. Sex and racial/ethnic disparities in outcomes after acute myocardial infarction: a cohort study among members of a large integrated health care delivery system in northern California. Arch Intern Med 2005; 165: 2105-13.
31. Sleight P. Survival following thrombolytic therapy. Eur Heart J 1990; 11(Sup F): 1-4.
32. Norris RM, Barnaby PF, Brandt PW, et al. Prognosis after recovery from first acute myocardial infarction: determinants of reinfarction and sudden death. Am J Cardiol 1984; 53: 408-13.
33. Savage MP, Krolewski AS, Kenien GG, et al. Acute myocardial infarction in diabetes mellitus and significance of congestive heart failure as a prognostic factor. Am J Cardiol 1988; 62: 665-9.
34. Kornowski R, Goldbourt U, Zion M, et al. Predictors and long-term prognostic significance of recurrent infarction in the year after a first myocardial infarction. SPRINT Study Group. Am J Cardiol 1993; 72: 883-8.
35. Kober L, Torp-Pedersen C, Pedersen OD, et al. Importance of congestive heart failure and interaction of congestive heart failure and left ventricular systolic function on prognosis in patients with acute myocardial infarction. Am J Cardiol 1996; 78: 1124-8.
36. de Gevigney G, Ecochard R, Rabilloud M, et al. Worsening of heart failure during hospital course of an unselected cohort of 2507 patients with myocardial infarction is a factor of poor prognosis: the PRIMA study. Eur J Heart Fail 2001; 3: 233-41.
37. Bosch X, Theroux P. Left ventricular ejection fraction to predict early mortality in patients with non-ST-segment elevation acute coronary syndromes. Am Heart J 2005; 150: 215-20.
38. Stevenson R, Ranjadayalan K, Wilkinson P, et al. Short and long term prognosis of acute myocardial infarction since introduction of thrombolysis. Brit Med J 1993; 307: 349-53.
39. Melchior T, Gadsboll N, Hildebrandt P, et al. Clinical characteristics, left and right ventricular ejection fraction, and long-term prognosis in patients with non-insulin-dependent diabetes surviving an acute myocardial infarction. Diabetic Med 1996; 13(5): 450-6.
40. Perez-Gonzalez J, Botvinick EH, Dunn R, et al. The late prognostic value of acute scintigraphic measurement of myocardial infarction size. Circulation 1982; 66: 960-71.
41. Ndrepepa G, Kastrati A, Schwaiger M, et al. Relationship between residual blood flow in the infarct-related artery and scintigraphic infarct Size, myocardial salvage, and functional recovery in patients with acute myocardial infarction. J Nuclear Med 2005; 46: 1782-8.
42. Elsman P, van 't Hof AW, Hoorntje JC, et al. Effect of coronary occlusion site on angiographic and clinical outcome in acute myocardial infarction patients treated with early coronary intervention. Am J Cardiol 2006; 97: 1137-41.
43. Bellotti G, Rochitte CE, de Albuquerque CP, et al. Usefulness of ST-segment depression in non-infarct-related electrocardiographic leads in predicting prognosis after thrombolytic therapy for acute myocardial infarction. Am J Cardiol 1997; 79: 1323-8.
44. White HD, Cross DB, Elliott JM, et al. Long-term prognostic importance of patency of the infarct-related coronary artery after thrombolytic therapy for acute myocardial infarction. Circulation 1994; 89: 61-7.
45. Fukuda D, Yoshiyama M, Shimada K, et al. Long-term beneficial effect of infarct-related artery patency in acute anterior myocardial infarction in patients with poor myocardial viability in the region-at-risk. Circ J 2004; 68: 1110-6.
46. Hands ME, Lloyd BL, Robinson JS, et al. Prognostic significance of electrocardiographic site of infarction after correction for enzymatic size of infarction. Circulation 1986; 73: 885-91.
47. Moreno PR, Falk E, Palacios JF, et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994; 90: 775-8.
48. Van der Wal AC, Becker AE, van der Loos CM, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89: 36-44.
49. James SK, Lindahl B, Timmer JR, et al. Usefulness of biomarkers for predicting long-term mortality in patients with diabetes mellitus and non-ST-elevation acute coronary syndromes (a GUSTO IV substudy). Am J Cardiol 2006; 97: 167-72.
50. Lee KW, Blann AD, Lip GY. Plasma markers of endothelial damage/dysfunction, inflammation and thrombogenesis in relation to TIMI risk stratification in acute coronary syndromes. Thromb Haemost 2005; 94: 1077-83.
51. Hamm CW, Bertrand M, Braunwald E. Acute coronary syndrome without ST elevation: Implementation of new guidelines. Lancet 2001; 358: 1533-8.
52. Rajappa M, Sharma A. Biomarkers of cardiac injury: an update. Angiology 2005; 56: 677-91.
53. Iqbal MP, Kazmi KA, Mehboobali N, et al. Myoglobin—a marker of reperfusion and a prognostic indicator in patients with acute myocardial infarction. Clin Cardiol 2004; 27: 144-50.
54. Horwich TB, Patel J, MacLellan WR, et al. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation 2003; 108: 833-8.
55. Roe MT, Chen AY, Riba AL, et al. Impact of congestive heart failure in patients with non-ST-segment elevation acute coronary syndromes. Am J Cardiol 2006; 97: 1707-12.
56. Odemuyiwa O, Farrell TG, Malik M, et al. Influence of age on the relation between heart rate variability, left ventricular ejection fraction, frequency of ventricular extrasystoles, and sudden death after myocardial infarction. Brit Heart J 1992; 67: 387-91.
57. Killip T, Kimball JT. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol 1967; 20: 457-64.
58. Naqvi TZ, Padmanabhan S, Rafii F, et al. Comparison of usefulness of left ventricular diastolic versus systolic function as a predictor of outcome following primary percutaneous coronary angioplasty for acute myocardial infarction. Am J Cardiol 2006; 97: 160-6.
59. Parodi G, Memisha G, Valenti R, et al. Five year outcome after primary coronary intervention for acute ST elevation myocardial infarction: results from a single centre experience. Heart 2005; 91: 1541-4.
60. Farkouh ME, Ramanathan K, Aymong ED, et al. An early revascularization strategy is associated with a survival benefit for diabetic patients in cardiogenic shock after acute myocardial infarction. Clin Cardiol 2006; 29: 204-10.
61. Barron HV, Bowlby LJ, Breen T, et al. Use of reperfusion therapy for acute myocardial infarction in the United States: data from the National Registry of Myocardial Infarction 2. Circulation 1998; 97: 1150-6.
62. Tiefenbrunn AJ, Chandra NC, French WJ, et al. Clinical experience with primary percutaneous transluminal coronary angioplasty compared with alteplase (recombinant tissue-type plasminogen activator) in patients with acute myocardial infarction: a report from the Second National Registry of Myocardial Infarction (NRMI-2). J Am Coll Cardiol 1998; 31: 1240-5.
63. Gersh BJ, Anderson JL. Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm--paradoxic or predictable? Circulation 1993; 88: 296-306.
64. Reeder GS, Gersh BJ. Modern management of acute myocardial infarction. Curr Prob Cardiology 1993; 18: 81-155.
65. Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. N Engl J Med 1993; 328: 673-9.
66. Stone GW, Brodie BR, Griffin JJ, et al. Clinical and angiographic follow-up after primary stenting in acute myocardial infarction. The primary angioplasty in myocardial infarction (PAMI) stem pilot trial. Circulation 1999; 99: 1548-54.
67. Birnbaum Y, Sclarovsky S, Blum A, et al. Prognostic significance of the initial electrocardiographic pattern in a first acute anterior wall myocardial infarction. Chest 1993; 103: 1681-7.
68. Berger CJ, Murabito JM, Evans JC. Prognosis after first myocardial infarction. JAMA 1992; 268: 1545-51.
69. Maki H, Ozawa Y, Tanigawa N, et al. Effect of reperfusion by direct percutaneous transluminal coronary angioplasty on ventricular late potentials in cases of total coronary occlusion at initial coronary arteriography. Jpn Circ J 1993; 57: 183-8.
70. Galvani M, Ottani F, Ferrini D, et al. Patency of the infarct-related artery and left ventricular function as the major determinants of survival after Q-wave acute myocardial infarction. Am J Cardiol 1993; 71: 1-7.
71. Benhorin J, Moss AJ, Oakes D. Prognostic significance of nonfatal myocardial reinfarction. Multicenter Diltiazem Postinfarction Trial Research Group. J Am Coll Cardiol 1990; 15(2): 253-8.
72. Peterson ED, Hathaway WR, Zabel KM, et al. Prognostic significance of precordial ST segment depression during inferior myocardial infarction in the thrombolytic era: results in 16,521 patients. J Am Coll Cardiol 1996; 28: 305-12.
73. Merrilees MA, Scott PJ, Norris RM. Prognosis after myocardial infarction: results of 15 year follow up. Brit Med J 1984; 288: 356-9.
74. Marcus FI, Friday K, McCans J, et al. Age-related prognosis after acute myocardial infarction (the Multicenter Diltiazem Postinfarction Trial). Am J Cardiol 1990; 65: 559-66.
75. Kotamaki M, Strandberg TE, Nieminen MS. Clinical findings, outcome and treatment in patients >= 75 years with acute myocardial infarction. Eur J Epidemiol 2003; 18: 781-6.
76. Tofler GH, Muller JE, Stone PH, et al. Factors leading to shorter survival after acute myocardial infarction in patients ages 65 to 75 years compared with younger patients. Am J Cardiol 1988; 62: 860-7.
77. Chung MK, Bosner MS, McKenzie JP, et al. Prognosis of patients > or = 70 years of age with non-Q-wave acute myocardial infarction compared with younger patients with similar infarcts and with patients > or = 70 years of age with Q-wave acute myocardial infarction. Am J Cardiol 1995; 75: 18-22.
78. Hirakawa Y, Masuda Y, Uemura K, et al. Age-related differences in the delivery of cardiac management to women versus men with acute myocardial infarction in Japan: Tokai Acute Myocardial Infarction Study: TAMIS. Int Heart J 2005; 46: 939-48.
79. Kosuge M, Kimura K, Kojima S, et al. Sex differences in early mortality of patients undergoing primary stenting for acute myocardial infarction. Circ J 2006; 70: 217-21.
80. Oka R, Fortmann S, Varady A. Differences in treatment of acute myocardial infarction by sex, age, and other factors (the Stanford Five-City Project). Am J Cardiol 1996; 78: 861-5.
81. Abbott RD, Donahue RP, Kannel WB, et al. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA 1988; 260: 3456-60.
82. Greenland P, Reicher-Reiss H, Goldbourt U, et al. In-hospital and 1-year mortality in 1,524 women after myocardial infarction. Comparison with 4,315 men. Circulation 1991; 83: 484-91.
83. Tofler GH, Stone PH, Muller JE, et al. Effects of gender and race on prognosis after myocardial infarction: adverse prognosis for women, particularly black women. J Am Coll Cardiol 1987; 9: 473-82.
84. Kanamasa K, Ishikawa K, Hayashi T, et al. Increased cardiac mortality in women compared with men in patients with acute myocardial infarction. Intern Med 2004; 43: 911-8.
85. Furman MI, Gore JM, Anderson FA, et al. Elevated leukocyte count and adverse hospital events in patients with acute coronary syndromes: findings from the Global Registry of Acute Coronary Events (GRACE). Am Heart J 2004; 147: 42-8.
86. Fang J, Alderman MH. Gender differences of revascularization in patients with acute myocardial infarction. Am J Cardiol 2006; 97: 1722-6.
87. Hirakawa Y, Masuda Y, Kuzuya M, et al. Age differences in the delivery of cardiac management to women versus men with acute myocardial infarction. Int Heart J 2006; 47: 209-17.
88. Hoffman M, Blum A, Baruch R, et al. Leukocytes and coronary heart disease. Atherosclerosis 2004; 172: 1-6.
89. Menon V, Lessard D, Yarzebski J, et al. Leukocytosis and adverse hospital outcomes after acute myocardial infarction. Am J Cardiol 2003; 92: 368-72.
90. Nunez J, Facila L, Llacer A, et al. Prognostic value of white blood cell count in acute myocardial infarction: long-term mortality. Rev Esp Cardiol 2005; 58(6): 631-9.
91. Schor S, Shani M, Modan B. Factors affecting immediate mortality of patients with acute myocardial infarction: a nationwide study. Chest 1975; 68: 217-21.
92. Zeller M, Cottin Y, Brindisi MC, et al. Impaired fasting glucose and cardiogenic shock in patients with acute myocardial infarction. Eur Heart J 2004; 25: 308-12.
93. Zeller M, Steg PG, Ravisy J, et al. Prevalence and Impact of Metabolic Syndrome on Hospital Outcomes in Acute Myocardial Infarction. Arch Intern Med 2005; 165: 1192-8.
94. Matsui H, Hashimoto H, Fukushima A, et al. MB fraction of cumulative creatine kinase correlates with insulin secretion in patients with acute myocardial infarction: insulin as a possible determinant of myocardial MB creatine kinase. Am Heart J 1996; 131: 24-31.
95. Hadjadj S, Coisne D, Mauco G, et al. Prognostic value of admission plasma glucose and HbA in acute myocardial infarction. Diabet Med 2004; 21: 305-10.
96. Haddock L, de Conty IT. Prevalence rates for diabetes mellitus in Puerto Rico. Diabetes care 1991; 14: 676-84.
97. Bartnik M, Malmberg K, Ryden L. Management of patients with type 2 diabetes after acute coronary syndromes. Diabetes Vasc Dis Rres 2005; 2: 144-54.
98. Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997; 96: 1152-6.
99. Malmberg K, Ryden L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005; 26: 650-61.
100. Spiecker M, Erbel R, Rupprecht HT, et al. Emergency angioplasty of totally occluded left main coronary artery in acute myocardial infarction and unstable angina pectoris: institutional experience and literature review. Eur Heart J 1994; 15: 602-7.
101. Berger PB, Ryan TJ. Inferior myocardial infarction: High risk subgroups. Circulation 1990; 81: 401-11.
102. Birnbaum Y, Wagner, GS Barbash, et al. Correlation of angiographic findings and right (V1 to V3) versus left (V4 to V6) precordial ST-segment depression in inferior wall acute myocardial infarction. Am J Cardiol 1999; 83: 143–8.
103. Correale E, Battista R, Martone A, et al. Electrocardiographical patterns in acute inferior myocardial infarction with and without right ventricle involvement: Classification, diagnostic and prognostic value, masking effect. Clin Cardiol 1999; 22: 37–44.
104. Gaitonde RS, Sharma N, Ali-Hasan S, et al. Electrocardiographical differentiation between right coronary and left circumflex coronary arterial occlusion in isolated inferior wall myocardial infarction. Indian Heart J 1999; 51: 281–4.
105. Ryan TJ, Anderson JL, Antman EM, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). Circulation 1996; 94: 2341-50.
106. Bertrand ME, Simoons ML, Fox KA, et al. Management of acute coronary syndromes: acute coronary syndromes without persistent ST segment elevation; recommendations of the Task Force of the European Society of Cardiology. Eur Heart J 2000; 21: 1406-32.
107. Johnston S, Brightwell R, Ziman M. Paramedics and pre-hospital management of acute myocardial infarction: diagnosis and reperfusion. EMJ 2006; 23: 331-4.
108. Bainey KR, Senaratne MPJ. Is the outcomes of early ST-segment resolution after thrombolytic therapy in acute myocardial infarction always favorable? J Electrocardiol 2005; 38: 354-60.
109. Spiecker M, Erbel R, Rupprecht HT, et al. Emergency angioplasty of totally occluded left main coronary artery in acute myocardial infarction and unstable angina pectoris: institutional experience and literature review. Eur Heart J 1994; 15: 602-7.
110. Tanaka A, Shimada K, Sano T, et al. Multiple plaque rupture and C-reactive protein in acute myocardial infarction. J Am Coll Cardiol 2005; 45: 1594-9.
111. Fernández-Patron C, Martinez-Cuesta MA, Salas E, et al. Differential regulation of platelet aggregation by Matrix metalloproteinases-9 and -2. Thromb Haemost 1999; 82: 1730–5.
112. Kai H, Ikeda H, Yasukawa H, et al. Peripheral blood levels of matrix metalloproteinases-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 1998; 32: 368–72.
113. Alvarez B, Ruiz C, Chacon P, et al. Serum values of metalloproteinase-2 and metalloproteinase-9 as related to unstable plaque and inflammatory cells in patients with greater than 70% carotid artery stenosis. J Vasc Surg 2004; 40: 469-75.
114. Rosemberg GA, Navratil M, Barone F, et al. Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 1996; 16: 360–6.
115. Wu DJ, Lin JA, Chiu YT, et al. Pathological and biochemical analysis of dilated cardiomyopathy of broiler chickens. Chin J Physiol 2003; 46: 19-26.
116. Schwartzkopff B, Fassbach M, Pelzer B, et al. Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy. Eur J Heart Fail 2002; 4: 439-45.
117. Altieri P, Brunelli C, Garibaldi S, et al. Metalloproteinases 2 and 9 are increased in plasma of patients with heart failure. Eur J Clin Invest 2003; 33: 648-56.
118. Abou-Raya S, Naim A, Marzouk S. Cardiac matrix remodelling in congestive heart failure: the role of matrix metalloproteinases. Clin Invest Med 2004; 27: 93-100.
119. Wagner DR, Delagardelle C, Ernens I, et al. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J Cardiac Fail 2006; 12: 66-72.
120. Zevon, S.S. Identification of high risk subsets of acute myocardial infarction. Am J Cardiol 1979; 44: 390-5.
121. Schulman SP. Antiplatelet therapy in non-ST-segment elevation acute coronary syndromes. JAMA 2004; 292: 1875-82.
122. Frierson JH, Dias AP, Metzdorff MT, et al. Critical left main stenosis presenting as diffuse ST segment depression. Am Heart J 1993; 125: 1773-7.
123. Blanke H, Cohen M, Schlueter GU, et al. Electrocardiographic and coronary arteriographic correlations during acute myocardial infarction. Am J Cardiol 1984; 54: 249-55.
124. Tzivoni D, Chenzbraun A, Keren A, et al. Reciprocal electrocardiographic changes in acute myocardial infarction Am J Cardiol 1985; 56: 23-6.
125. Celik S, Yilmaz R, Baykan M, et al. Are reciprocal changes a consequence of “ischemic at a distance” or merely a benign electrical phenomenon? A pulsed-wave tissue Doppler echocardiographic study. Ann Noninvasive Electrocardiol 2003; 8: 302-7.
126. Flugelman MY, shalit M, Shefer A, et al. Survival after sudden obstruction of the left main coronary artery. Am J Cardiol 1983; 51: 900-1.
127. Salvi A, Klugmann S, Della Grazia E, et al. Myocardial reperfusion after acute occlusion of the left main coronary artery. Am J Cardiol 1983; 51: 1791.
128. Oatfield RG, Nordmark SP. Acute total occlusion of the main coronary artery associated with long-term survival: a case report. Angiology 1989; 40: 309-12.
129. Iwasaki K, Kusachi S, Hina K, et al. Acute left main coronary artery obstruction with myocardial infarction: reperfusion strategies and the clinical and angiographic outcome. Jpn Circ J 1993; 57: 891-7.
130. von Essen R, Lambertz H, Schmidt W, et al. Successful recanalization of a left main coronary artery occlusion. Am J Cardiol 1984; 53: 356-7.
131. Finzi LA, Secches AL, Evora PR, et al. Myocardial reperfusion by thrombolysis after acute total left main artery occlusion: a case report. Angiology 1987; 38: 417-21.
132. Siemons L, Ranquin R, Van den Heuvel P, et al. Intravenous streptokinase-mediated thrombolysis of acute occlusion of the left main coronary artery. Am J Cardiol 1987; 60: 1403-4.
133. Prachar H, Dittel M, Enenkel W. Acute occlusion of left main coronary artery without ventricular damage. Clin Cardiol 1991; 14: 176-9.
134. Takayanaagi K, Satoh T, Inoue T, et al. Survival from acute occlusion of the left main coronary artery with preexisting collateral vessels: a case report. Angiology 1991; 42: 935-9.
135. Sclarovsky S, Kjell N, Birnbau Y. Manifestation of left main coronary artery stenosis is diffuse ST depression in inferior and precordial leads on ECG. J Am Coll Cardiol 2002; 40: 575-6.
136. Birnbaum Y, Solodky A, Herz I, et al. Implications of inferior ST-segment depression in acute anterior myocardial infarction: electrocardiographic and angiographic correlation. Am Heart J 1994; 127: 1467-73.
137. Tamura A, Kataoka H, Mikuriya Y, et al. Inferior ST-segment depression as a useful marker for identifying proximal left anterior descending coronary artery occlusion during acute anterior myocardial infarction. Eur Heart J 1995; 16: 1975-9.
138. Martinez-Dolz L, Arnau MA, Almenar L, et al. Usefulness of the electrocardiogram in predicting the occlusion site in acute anterior myocardial infarction with isolated disease of the left anterior descending coronary artery. Rev Esp Cardiol 2002; 55: 1036-41.
139. Romanic AM, Burns-Kurtis CI, Gout B. Matrix metalloproteinase in cardiac myocytes follow myocardial infarction in the rabbit. Life Sci 2001; 68: 799-814.
140. Peterson JT, Li H, Dillon L, et al. Evolution of Matrix metalloproteinase and tissue inhibitor during heart failure progression in infarcted rat. Cardiovasc Res 2000; 46: 307-15.
141. Lu L, Gunja-Smith Z, Woessner JF. Matrix metalloproteinase and collagen ultrastructure in moderate myocardial ischemia and reperfusion in vivo. Am J Physiol Heart Circ Physiol 2000; 279: H601-9.
142. Etoh T, Joffs C, Deschamps AM. Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pig. Am J Physiol Heart Circ Physiol 2001; 281: H987-94.
143. Kaden JJ, Dempfle CE, Sueselbeck T. Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology 2003; 99: 140-4.
144. Cheung PY, Sawicki G, Wozniak M. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 2000; 101: 1833-9.
145. Kai H, Ikeda H, Yasukawa H. Peripheral blood levels of Matrix metalloproteinase-2 and -9 are elevated in patients with acute coronary syndromes. J Am Coll Cardiol 1998; 32: 368-72.
146. Inokubo Y, Hanada H, Ishizaka H. Plasma levels of Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J 2001; 141: 211-7.
147. Gaudron P, Eilles C, Kugler I, et al. Progressive left ventricular dysfunction and remodeling after myocardial infarction: potential mechanisms and early predictors. Circulation 1993; 87: 755-63.
148. Pirolo JS, Hutchins GM, Moore GW. Infarct expansion: pathologic analysis of 204 patients with a single myocardial infarct. J Am Coll Cardiol 1986; 7: 349-54.
149. Steinberg J, Fink G, Picone A, et al. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Technol 2001; 33: 218-22.
150. Takeshita S, Tokutomi T, Kawase H, et al. Elevated serum levels of matrix metalloproteinase-9 (MMP-9) in Kawasaki disease. Clin Exp Immunol 2001; 125: 340-4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 探討基質金屬蛋白酶-2及-9在星狀膠細胞感染弓蟲之活性探討基質金屬蛋白酶-2及-9在星狀膠細胞感染弓蟲之活性探討基質金屬蛋白酶-2及-9在星狀膠細胞感染弓蟲之活性
2. 樟芝超臨界水萃取物對乳癌細胞之生物活性探討
3. 探討中藥萃取物對人類纖維母細胞之基質金屬蛋白酵素-1,-2,-9之活性
4. 二十二碳六烯酸與二十碳五烯酸對調控SKOV-3人類卵巢腺癌細胞移行及侵襲相關蛋白表現之影響
5. 人類白血病細胞金屬蛋白酶 (MMP-2、MMP-9與ADAM17)表現之分子調控機制
6. 探討 EZH2 抑制 TIMP2 的表現在促進三陰性乳癌細胞轉移的角色
7. 樟芝超臨界萃取物對乳癌細胞影響之研究
8. 第二型糖尿病患之糖尿病藥物與急性心肌梗塞、中風、心臟衰竭和死亡的風險-以加入全國糖尿病論質計酬之病患為研究對象
9. 1. 探討夏枯草抑制非小細胞肺癌細胞轉移機制 2.篩選以細胞自噬去除神經細胞堆積多麩胺酸的小分子新穎化合物
10. 植化物紫草素在小鼠皮膚上增加血管通透性之研究
11. 探討ILK在胸腺素β4誘發SW480大腸癌細胞移行中所扮演的角色
12. 犬之血漿及子宮內膜中基質金屬蛋白酵素2與9於發情周期之活性表現
13. 基質金屬蛋白酵素-2、-9與糖皮質固醇於乳腺腫瘤犬隻之變化
14. 探討PyrrolidineDithiocarbamate影響人類臍帶靜脈內皮細胞株與初級細胞對基質金屬蛋白酵素活化的作用與機轉差異