跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙秀慧
研究生(外文):Shiou-Huei Chao
論文名稱:Bacillusamyloliquefaciens23-7APepFBAoligopeptidase及其它外泌性蛋白酶的酵素性質研究
論文名稱(外文):Characterization of a novel PepFBA oligopeptidase and other secreted proteases from Bacilus amyloliquefaciens 23-7A
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:膠原蛋白分解菌膠原蛋白分解酵素
外文關鍵詞:Bacillus amyloliquefaciensOligopeptidaseOligopeptidase M3 familycollagen-hydrolytic enzymes
相關次數:
  • 被引用被引用:4
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本實驗室由土壤中篩選出具有分解膠原蛋白能力的菌株Bacillus amyloliquefaciens 23-7A,經脫脂黃豆醱酵培養後,依據分解受質的種類 (FALGPA、Caein及Gelatin),總共純化到8種外泌性蛋白酶,分別命名為PepFBA酵素、C酵素群(C1, C2A, C2B酵素)及G酵素群 (G1~G4)。根據PepFBA酵素N端及部分胜肽序列,設計出的引子進行PCR。以PCR的產物做為探針,再從染色體基因庫中選殖出完整的基因。PepFBA酵素的基因全長為2,013 bp,可轉譯出670個胺基酸 (77,049 Da)的pre-pro蛋白。當含23個胺基酸的signal peptide被切除後,pro-PepFBA會在胞外進行另一次剪切,將7個胺基酸長度的pro序列切除。經兩次剪切後,PepFBA的分子量為73,647 Da,與利用SDS-PAGE求得的分子量接近 (69,000 Da)。在蛋白序列中,具有結合鋅離子的His-Glu-X-X-His motif序列,這與PepFBA會被金屬螫合劑所抑制的特性相符。以NCBI Blast軟體進行蛋白序列的比對,PepFBA與Bacillus subtilis PepF及Bacillus licheniformis Pz-peptidase具有85%及87%的相似性。這兩個酵素都是屬於oligopeptidase M3 family,PepFBA的酵素性質與這個家族的其他oligopeptidases相似,即僅能分解分子量小的胜肽鏈 (介於含5~21胺基酸),對於完整的蛋白無法作用。PepFBA在分解受質時,C端至少要有3個胺基酸,而受質的P1位置的胺基酸種類非常多變,幾乎可以是任何胺基酸。PepFBA在菌體所扮演的角色,可能是和訊息傳導分子 ”Phr” 的生成有關。Phr是含5個胺基酸的胜肽鏈,是調控Bacillus subtilis 產孢及competence的訊息傳導分子。但另外,PepFBA也可以促進膠原蛋白胜肽的分解,不排除它亦參與在胞外胜肽鏈的分解,以利菌體吸收利用。

另外在B. amyloliquefaciens 23-7A外泌的8個酵素中,只有C1及G1酵素可以分解膠原蛋白。C1酵素是分子量40 kDa的metallopeptidase,活性會受到EDTA及1,10-phenanthroline抑制。而G1酵素則是45 kDa的serine protease,活性受到PMSF的抑制。透過脂類受質的分析,可以了解C1酵素在P1位置的胺基酸性偏好Asp,G1酵素是Leu。依據蛋白序列分析,C1與G1酵素分別與B. subtilis pectate lyase及bacillopeptidase F相似。如同PepFBA,這兩個酵素在醱酵的初期就開始分泌,推測它們主要是參與在蛋白質的分解,以提供菌體生長的營養需求。
A collagenase-producing strain was screened from soil and identified as Bacillus amyloliquefaciens 23-7A. Eight different secreted proteases were purified and classified as PepFBA, C group (C1, C2A, and C2B), and G group (G1, G2, G3, and G4) proteases according to their abilities to hydrolyze FALGPA (2-furylacryloyl-Leu-Gly-Pro-Ala), Casein, and Gelatin. From the N-terminal and internal peptide sequences of PepFBA, a pair of degenerate primer were designed for PCR operation by using genomic DNA as template. The amplified PCR product was used as a probe to get the full length of PepFBA gene from genomic library. The PepFBA gene was 2,013 bp long and could be translated as a pre-pro protein containing 670 amino acid residues. This pre-pro protein would carry two processings to remove a 23-residue long signal peptide while was transported outward and a 7-residue long pro-sequence extracellularly. After processing, the molecular weight of PepFBA was 73,647 Da that was close to the mass detected by SDS-PAGE (69,000). A zinc-binding motif, His-Glu-X-X-His, could be found in the protein sequence and this matched the characteristic that PepFBA was inhibited by metal-chelating agents. PepFBA had 85% and 87% identity in protein sequence with Bacillus licheniformis Pz-peptidase and Bacillus subtilis PepF which both belong to oligopeptidase M3 family. The enzymatic properties of PepFBA had typical enzymatic characteristics of this family that could only digest oligopeptides. PepFBA could hydrolyze the substrates that comprise 5 and 21 residues with a rather wide specificity and at least 3 residues were needed in the C-terminal part. PepFBA may involve in active Phr formation, the pentapeptides that are regarded as signal molecules to regulate the sporulation and competence development of B. subtilis. However, because of the ability to accelerate collagen peptides degradation, it shouldn’t be ruled out that PepFBA played a role in hydrolyzing peptides into shorter form that could be utilized by cell.

Among the 8 purified proteases, only C1 and G1 proteases could hydrolyze intact collagen. C1 protease was a metallopeptidase with molecular weight 40 kDa. EDTA and 1,10-phenanthroline would inhibit its activity. As for the G1 protease, it was a serine protease with molecular weight of 45 kDa. From the analyzed results of ester substrates, C1 protease preferred Asp in position P1 of the cleaved bond and G1 protease was Leu. They, C1 and G1 protease, both had the similarities in peptide sequences with B. subtilis pectate lyase and bacillopeptidase F, respectively. It is speculated that these two proteases might hydrolyze proteins for nutrient requirement. However, further experiments are needed.
縮寫 ………………………………………………………………I
中文摘要 …………………………………………………………II-III
英文摘要 …………………………………………………………IV-V
壹、前言 …………………………………………………………1-16
1. 蛋白酶簡介 ………………………………………………1-3
2. Oligopeptidase M3 family ……………………………3-9
3. Bacillus subtilis的訊息傳遞系統 ……………………10-13
4. 微生物之膠原蛋白酶 (bacterial collagenase) ……14-16
貳、研究目的 ………………………………………………… 17-18
參、材料與方法 ……………………………………………… 19-36
1. 菌株來源 …………………………………………………19
2. 菌株培養 …………………………………………………19
3. 生長曲線分析--菌數與孢子的計量 ……………………19
4. 酵素純化 …………………………………………………20-23
5. 酵素活性分析 ……………………………………………23-27
6. PepFBA酵素內鋅離子含量分析 ………………………… 27
7. 蛋白質含量的測定 ………………………………………28
8. SDS-PAGE分析 ……………………………………………28
9. 蛋白定序 …………………………………………………29-30
10. 蛋白質分子量的測定 ………………………………… 30
11. DNA萃取 ……………………………………………… 30-31
12. 染色體基因庫的建立 ………………………………… 31-36
18. PepFBA促進膠原蛋白胜肽的分解 …………………… 36
肆、結果 ……………………………………………………… 37-50
1. 各酵素的生產與生長曲線 …………………………… 37
2. 各酵素的純化 ………………………………………… 38-39
3. PepFBA、C1與G酵素的基本性質 ……………………… 39-42
4. 各酵素之蛋白定序 …………………………………… 42-44
5. 基因庫的構築:PepFBA酵素基因選殖與比對 ……… 44-46
6. PepFBA的切位分析 …………………………………… 46-49
7. PepFBA鋅離子含量 …………………………………… 49
8. PepFBA促進膠原蛋白胜肽的分解 …………………… 49-50
伍、討論 …………………………………………………… 51-61
1. B. amyloliquefaciens 23-7A的蛋白酶生產 ……… 51-52
2. PepFBA蛋白序列比對 ……………………………… 52-53
3. PepFBA之切位分析與比較 …………………………… 53-55
4. PepFBA的鋅含量及鋅離子的活性抑制 ……………… 55-56
5. PepFBA可能的生理功能 ……………………………… 56-59
6. G1酵素與B. subtilis bacillopeptidase F ……… 59-60
7. C1酵素與B. subtilis pectate lyase (Q34819) … 60-61
8. 未來方向 ……………………………………………… 61
陸、參考文獻 ……………………………………………… 62-72
圖表 ………………………………………………………… 73-107
1. Acker, G. R., C. Molineaux, and M. Orlowski. 1987. Synaptosomal membrane-bound form of endopeptidase-24.15 generates Leu-enkephalin from dynorphin1-8, alpha- and beta-neoendorphin, and Met-enkephalin from Met-enkephalin-Arg6-Gly7-Leu8. J. Neurochem. 48:284-92.
2. Akiyama, K., K. Mori, and R. Takata. 1999. Cloning and sequencing of the Pz-peptidase gene from Bacillus licheniformis N22. J. Biosci. Bioeng. 87:231-233.
3. Asdornnithee, S., K. Akiyama, T. Sasaki, and R. Takata. 1994. Isolation and characterization of a collagenolytic enzyme from Bacillus licheniformis N22. J. Ferment. Bioeng. 78:283-287.
4. Asdornnithee, S., E. Himeji, K. Akiyama, T. Sasaki, and R. Takata. 1995. Isolation and characterization of Pz-peptidase from Bacillus licheniformis N22. J. Ferment. Bioeng. 79:200-204.
5. Baragi, V. M., B. J. Shaw, R. R. Renkiewicz, P. J. Kuipers, H. G. Welgus, M. Mathrubutham, J. R. Cohen, and S. K. Rao. 2000. A versatile assay for gelatinases using succinylated gelatin. Matrix Biol. 19:267-73.
6. Barrett, A. J. 1991. Thimet oligopeptidase (EC 3.4.24.15): the same by any name? Biochem. J. 277 ( Pt 1):295-6.
7. Barrett, A. J., and M. A. Brown. 1990. Chicken liver Pz-peptidase, a thiol-dependent metallo-endopeptidase. Biochem. J. 271:701-6.
8. Barrett, A. J., M. A. Brown, P. M. Dando, C. G. Knight, N. McKie, N. D. Rawlings, and A. Serizawa. 1995. Thimet oligopeptidase and oligopeptidase M or neurolysin. Methods Enzymol. 248:529-556.
9. Barrett, A. J., and U. Tisljar. 1989. The activities of 'Pz-peptidase' and 'endopeptidase 24.15' are due to a single enzyme. Biochem. J. 261:1047-50.
10. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2:582-7.
11. Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340:783-95.
12. Bergmann, M., and W. F. Ross. 1936. On proteolytic enzymes. X. The enzymes of papain and their activation. J. Biol. Chem. 114:717-726.
13. Bond, M. D., and H. E. Van Wart. 1984. Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry 23:3085-91.
14. Bond, M. D., and H. E. Van Wart. 1984. Purification and separation of individual collagenases of Clostridium histolyticum using red dye ligand chromatography. Biochemistry 23:3077-85.
15. Bond, M. D., and H. E. Van Wart. 1984. Relationship between the individual collagenases of Clostridium histolyticum: evidence for evolution by gene duplication. Biochemistry 23:3092-9.
16. Bongiorni, C., S. Ishikawa, S. Stephenson, N. Ogasawara, and M. Perego. 2005. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J. Bacteriol. 187:4353-61.
17. Brown, C. K., K. Madauss, W. Lian, M. R. Beck, W. D. Tolbert, and D. W. Rodgers. 2001. Structure of neurolysin reveals a deep channel that limits substrate access. Proc. Natl. Acad. Sci. USA 98:3127-3132.
18. Camargo, A. C., H. Caldo, and P. C. Emson. 1983. Degradation of neurotensin by rabbit brain endo-oligopeptidase A and endo-oligopeptidase B (proline-endopeptidase). Biochem. Biophys. Res. Commun. 116:1151-9.
19. Charli, J. L., M. Mendez, M. A. Vargas, M. Cisneros, M. Assai, P. Joseph-Bravo, and S. Wilk. 1989. Pyroglutamyl peptidase II inhibition specifically increases recovery of TRH released from rat brain slices. Neuropeptides 14:191-6.
20. Checler, F., H. Barelli, P. Dauch, V. Dive, B. Vincent, and J. P. Vincent. 1995. Neurolysin: purification and assays. Methods Enzymol. 248:593-614.
21. Chu, T. G., and M. Orlowski. 1985. Soluble metalloendopeptidase from rat brain: action on enkephalin-containing peptides and other bioactive peptides. Endocrinology 116:1418-25.
22. Chun, J., and K. S. Bae. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78:123-7.
23. Claverys, J. P., B. Grossiord, and G. Alloing. 2000. Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental conditions? Res. Microbiol. 151:457-63.
24. Collmer, A., and N. T. Keen. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24:383.
25. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318-22.
26. Dahms, P., and R. Mentlein. 1992. Purification of the main somatostatin-degrading proteases from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16. Eur. J. Biochem. 208:145-54.
27. Dalbey, R. E., M. O. Lively, S. Bron, and J. M. van Dijl. 1997. The chemistry and enzymology of the type I signal peptidases. Protein Sci. 6:1129-38.
28. Doi, E., D. Shibata, and T. Matoba. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Anal. Biochem. 118:173-84.
29. Dunny, G. M., and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527-64.
30. Fuqua, C., and E. P. Greenberg. 1998. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1:183-9.
31. Fuqua, C., S. C. Winans, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727-51.
32. Godfrey, T., and B. West. 1996. Industrial enzymology, 2 ed. Macmillan Publishers Inc., New Youk.
33. Gomez-Ortiz, M., F. X. Gomis-Ruth, R. Huber, and F. X. Aviles. 1997. Inhibition of carboxypeptidase A by excess zinc: analysis of the structural determinants by X-ray crystallography. FEBS Lett. 400:336-40.
34. Gominet, M., L. Slamti, N. Gilois, M. Rose, and D. Lereclus. 2001. Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol. Microbiol. 40:963-75.
35. Grassmann, W., and H. Dyckerhoff. 1928. Uber die Proteinase und die Polypeptidase der Hefe. 13. Abhandlung uber Pflanzenproteasen in der von R. Willstatter und Mitarbeitern begonnenen Untersuchungsreihe. Hoppe-Seyler's Z. Physiol. Chem. 179:41-78.
36. Grossman, A. D., and R. Losick. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 85:4369-73.
37. Hatakeyama, T., H. Kohzaki, and N. Yamasaki. 1992. A microassay for proteases using succinylcasein as a substrate. Anal. Biochem. 204:181-4.
38. Healy, D. P., and M. Orlowski. 1992. Immunocytochemical localization of endopeptidase 24.15 in rat brain. Brain Res. 571:121-8.
39. Heidrich, H. G., O. Kronschnabl, and K. Hannig. 1973. Eine Endopeptidase aus der Matrix von Rattenlebermitochondrien. Isolierung, Reinigung und charakterisierung des Enzymes. [An endopeptidase from the matrix of rat liver mitochondria. Isolation, purification and characterization of the enzyme.]. Z. Physiol. Chem. 354:1399-1404.
40. Higgins, C. F. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67-113.
41. Hoch, J. A. 1998. Initiation of bacterial development. Curr. Opin. Microbiol. 1:170-4.
42. Hoch, J. A., and T. J. Silhavy. 1995. Two-component signal transduction. American Society for Microbiology, Washington, D.C.
43. Hutchison, C. A., S. N. Peterson, S. R. Gill, R. T. Cline, O. White, C. M. Fraser, H. O. Smith, and J. C. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:2165-9.
44. Jackson, R. J., M. L. Dao, and D. V. Lim. 1994. Cell-associated collagenolytic activity by group B streptococci. Infect. Immun. 62:5647-51.
45. Jiang, M., R. Grau, and M. Perego. 2000. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J. Bacteriol. 182:303-10.
46. Jiang, M., W. Shao, M. Perego, and J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535-42.
47. Kanamaru, K., S. Stephenson, and M. Perego. 2002. Overexpression of the PepF oligopeptidase inhibits sporulation initiation in Bacillus subtilis. J. Bacteriol. 184:43-50.
48. Kato, A., N. Sugiura, Y. Saruta, T. Hosoiri, H. Yasue, and S. Hirose. 1997. Targeting of endopeptidase 24.16 to different subcellular compartments by alternative promoter usage. J. Biol. Chem. 272:15313-22.
49. Keil, B. 1992. Vibrio alginolyticus ("Achromobacter") collagenase: biosynthesis, function and application. Matrix Suppl. 1:127-33.
50. Kim, S. I., A. Pabon, T. A. Swanson, and M. J. Glucksman. 2003. Regulation of cell-surface major histocompatibility complex class I expression by the endopeptidase EC3.4.24.15 (thimet oligopeptidase). Biochem. J. 375:111-20.
51. Kleerebezem, M., L. E. Quadri, O. P. Kuipers, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24:895-904.
52. Koike, H., H. Seki, Z. Kouchi, M. Ito, T. Kinouchi, S. Tomioka, H. Sorimachi, T. C. Saido, K. Maruyama, K. Suzuki, and S. Ishiura. 1999. Thimet oligopeptidase cleaves the full-length Alzheimer amyloid precursor protein at a beta-secretase cleavage site in COS cells. J. Biochem. (Tokyo) 126:235-42.
53. Konkoy, C. S., and T. P. Davis. 1996. Ectoenzymes as sites of peptide regulation. Trends Pharmacol. Sci. 17:288-94.
54. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, M. G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B. Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton, A. Danchin, and et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249-256.
55. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-5.
56. Lasdun, A., S. Reznik, C. J. Molineaux, and M. Orlowski. 1989. Inhibition of endopeptidase 24.15 slows the in vivo degradation of luteinizing hormone-releasing hormone. J. Pharmacol. Exp. Ther. 251:439-47.
57. Lazazzera, B. A. 2001. The intracellular function of extracellular signaling peptides. Peptides 22:1519-27.
58. Lin, B., W. F. Averett, J. Novak, W. W. Chatham, S. K. Hollingshead, J. E. Coligan, M. L. Egan, and D. G. Pritchard. 1996. Characterization of PepB, a group B streptococcal oligopeptidase. Infect. Immun. 64:3401-3406.
59. Lukac, J., and E. Koren. 1977. The metalloenzymic nature of collagenase-like peptidase of the rat testis. J. Reprod. Fertil. 49:95-9.
60. Makinen, K. K., and P. L. Makinen. 1987. Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain Soc 67). J. Biol. Chem. 262:12488-95.
61. Margot, P., and D. Karamata. 1996. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142 ( Pt 12):3437-44.
62. Matsumoto, T., D. Katsura, A. Kondo, and H. Fukuda. 2002. Efficient secretory overexpression of Bacillus subtilis pectate lyase in Escherichia coli and single-step purification. Biochem. Eng. J. 12:175-179.
63. Matsushita, O., C. M. Jung, S. Katayama, J. Minami, Y. Takahashi, and A. Okabe. 1999. Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J. Bacteriol. 181:923-33.
64. Matsushita, O., C. M. Jung, J. Minami, S. Katayama, N. Nishi, and A. Okabe. 1998. A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J. Biol. Chem. 273:3643-8.
65. Matsushita, O., T. Koide, R. Kobayashi, K. Nagata, and A. Okabe. 2001. Substrate recognition by the collagen-binding domain of Clostridium histolyticum class I collagenase. J. Biol. Chem. 276:8761-70.
66. Mentlein, R., and P. Dahms. 1994. Endopeptidases 24.16 and 24.15 are responsible for the degradation of somatostatin, neurotensin, and other neuropeptides by cultivated rat cortical astrocytes. J. Neurochem. 62:27-36.
67. Monnet, V., M. Nardi, A. Chopin, M. C. Chopin, and J. C. Gripon. 1994. Biochemical and genetic characterization of PepF, an oligopeptidase from Lactococcus lactis. J. Biol. Chem. 269:32070-32076.
68. Nagano, H., and K. A. To. 2000. Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci. Biotechnol. Biochem. 64:181-3.
69. Nagano, H., and K. A. To. 2000. Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Biosci Biotechnol Biochem 64:181-3.
70. Nardi, M., P. Renault, and V. Monnet. 1997. Duplication of the pepF gene and shuffling of DNA fragments on the lactose plasmid of Lactococcus lactis. J. Bacteriol. 179:4164-71.
71. Nasser, W., F. Chalet, and J. Robert-Baudouy. 1990. Purification and characterization of extracellular pectate lyase from Bacillus subtilis. Biochimie 72:689-95.
72. Nodwell, J. R., and R. Losick. 1998. Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J. Bacteriol. 180:1334-7.
73. Nodwell, J. R., K. McGovern, and R. Losick. 1996. An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol. Microbiol. 22:881-93.
74. Ohta, Y., and M. Inouye. 1990. Pro-subtilisin E: purification and characterization of its autoprocessing to active subtilisin E in vitro. Mol. Microbiol. 4:295-304.
75. Okamoto, M., Y. Yonejima, Y. Tsujimoto, Y. Suzuki, and K. Watanabe. 2001. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl. Microbiol. Biotechnol. 57:103-8.
76. Omura, K., M. Hitosugi, K. Kaketani, X. Zhu, H. Maeda, and S. Tokudome. 2004. Fibrinolytic and anti-thrombotic effect of NKCP, the protein layer from Bacillus subtilis (natto). Biofactors 22:185-7.
77. Omura, K., M. Hitosugi, X. Zhu, M. Ikeda, H. Maeda, and S. Tokudome. 2005. A Newly Derived Protein From Bacillus subtilis natto With Both Antithrombotic and Fibrinolytic Effects. J. Pharmacol. Sci.
78. Orlowski, M., S. Reznik, J. Ayala, and A. R. Pierotti. 1989. Endopeptidase 24.15 from rat testes. Isolation of the enzyme and its specificity toward synthetic and natural peptides, including enkephalin-containing peptides. Biochem. J. 261:951-8.
79. Park, C. H., S. J. Lee, S. G. Lee, W. S. Lee, and S. M. Byun. 2004. Hetero- and autoprocessing of the extracellular metalloprotease (Mpr) in Bacillus subtilis. J. Bacteriol. 186:6457-64.
80. Perego, M. 2001. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol. Microbiol. 42:133-43.
81. Perego, M. 1997. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc. Natl. Acad. Sci. USA 94:8612-7.
82. Perego, M., and J. A. Brannigan. 2001. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides 22:1541-7.
83. Perego, M., P. Glaser, and J. A. Hoch. 1996. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol Microbiol 19:1151-7.
84. Perego, M., C. Hanstein, K. M. Welsh, T. Djavakhishvili, P. Glaser, and J. A. Hoch. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047-55.
85. Perego, M., C. F. Higgins, S. R. Pearce, M. P. Gallagher, and J. A. Hoch. 1991. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5:173-85.
86. Perego, M., and J. A. Hoch. 1996. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:1549-1553.
87. Peterkofsky, B. 1982. Bacterial collagenase. Methods Enzymol. 82:453-471.
88. Pierotti, A., K. W. Dong, M. J. Glucksman, M. Orlowski, and J. L. Roberts. 1990. Molecular cloning and primary structure of rat testes metalloendopeptidase EC 3.4.24.15. Biochemistry 29:10323-9.
89. Pospiech, A., and B. Neumann. 1995. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet. 11:217-8.
90. Pritchard, D. G. 2004. Oligopeptidase PepB, p. 371-372, Handbook of Proteolytic Enzymes. Barrett, A.J., Rawlings, N.D. and Woessner, J.F.
91. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62:597-635.
92. Rao, S. K., M. Mathrubutham, A. Karteron, K. Sorensen, and J. R. Cohen. 1997. A versatile microassay for elastase using succinylated elastin. Anal. Biochem. 250:222-7.
93. Rawlings, N. D., and A. J. Barrett. 1995. Evolutionary families of metallopeptidases. Methods Enzymol. 248:183-228.
94. Rawlings, N. D., D. P. Tolle, and A. J. Barrett. 2004. MEROPS: the peptidase database. Nucleic Acids Res. 32:D160-4.
95. Ray, K., C. S. Hines, J. Coll-Rodriguez, and D. W. Rodgers. 2004. Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization. J. Biol. Chem. 279:20480-20489.
96. Roitsch, C. A., and J. H. Hageman. 1983. Bacillopeptidase F: two forms of a glycoprotein serine protease from Bacillus subtilis 168. J. Bacteriol. 155:145-52.
97. Rudner, D. Z., J. R. LeDeaux, K. Ireton, and A. D. Grossman. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173:1388-98.
98. Rufo, G. A., Jr., B. J. Sullivan, A. Sloma, and J. Pero. 1990. Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis. J. Bacteriol. 172:1019-23.
99. Saric, T., J. Beninga, C. I. Graef, T. N. Akopian, K. L. Rock, and A. L. Goldberg. 2001. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J. Biol. Chem. 276:36474-81.
100. Scheufler, C., A. Brinker, G. Bourenkov, S. Pegoraro, L. Moroder, H. Bartunik, F. U. Hartl, and I. Moarefi. 2000. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199-210.
101. Schriefer, J. A., and C. J. Molineaux. 1993. Modulatory effect of endopeptidase inhibitors on bradykinin-induced contraction of rat uterus. J. Pharmacol. Exp. Ther. 266:700-6.
102. Serizawa, A., P. M. Dando, and A. J. Barrett. 1995. Characterization of a mitochondrial metallopeptidase reveals neurolysin as a homologue of thimet oligopeptidase. J. Biol. Chem. 270:2092-8.
103. Shaw, C. Y. 2002. Studies on the collagenase of Bacillus sp. 23-7A and antioxidant activity of Sinomonium acutum.
104. Shevchenko, A. 2001. Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. Anal. Biochem. 296:279-83.
105. Shrimpton, C. N., M. J. Glucksman, R. A. Lew, J. W. Tullai, E. H. Margulies, J. L. Roberts, and A. I. Smith. 1997. Thiol activation of endopeptidase EC 3.4.24.15. A novel mechanism for the regulation of catalytic activity. J. Biol. Chem. 272:17395-9.
106. Siezen, R. J., W. M. de Vos, J. A. Leunissen, and B. W. Dijkstra. 1991. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng 4:719-37.
107. Siezen, R. J., and J. A. Leunissen. 1997. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6:501-23.
108. Sloma, A., A. Ally, D. Ally, and J. Pero. 1988. Gene encoding a minor extracellular protease in Bacillus subtilis. J. Bacteriol. 170:5557-63.
109. Sloma, A., C. F. Rudolph, G. A. Rufo, Jr., B. J. Sullivan, K. A. Theriault, D. Ally, and J. Pero. 1990. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J. Bacteriol. 172:1024-9.
110. Sloma, A., G. A. Rufo, Jr., C. F. Rudolph, B. J. Sullivan, K. A. Theriault, and J. Pero. 1990. Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J. Bacteriol. 172:1470-7.
111. Sloma, A., G. A. Rufo, Jr., K. A. Theriault, M. Dwyer, S. W. Wilson, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J. Bacteriol. 173:6889-95.
112. Smith, E. L., F. S. Markland, C. B. Kasper, R. J. DeLange, M. Landon, and W. H. Evans. 1966. The complete amino acid sequence of two types of subtilisin, BPN' and Carlsberg. J. Biol. Chem. 241:5974-6.
113. Solomon, J. M., B. A. Lazazzera, and A. D. Grossman. 1996. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10:2014-2024.
114. Solomon, J. M., B. A. Lazazzera, and A. D. Grossman. 1996. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10:2014-24.
115. Stephenson, S., C. Mueller, M. Jiang, and M. Perego. 2003. Molecular analysis of Phr peptide processing in Bacillus subtilis. J. Bacteriol. 185:4861-71.
116. Strauch, L., H. Vencelj, and K. Hannig. 1968. Kollagenase in zellen Hoher entwickelter Tiere. [Collagenase in cells of higher animals.]. Z. Physiol. Chem. 349:171-178.
117. Takeuchi, H., Y. Shibano, K. Morihara, J. Fukushima, S. Inami, B. Keil, A. M. Gilles, S. Kawamoto, and K. Okuda. 1992. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem. J. 281 ( Pt 3):703-8.
118. Tisljar, U. 1993. Thimet oligopeptidase--a review of a thiol dependent metallo-endopeptidase also known as Pz-peptidase endopeptidase 24.15 and endo-oligopeptidase. Biol. Chem. Hoppe. Seyler. 374:91-100.
119. Tisljar, U., and A. J. Barrett. 1990. A distinct thimet peptidase from rat liver mitochondria. FEBS Lett. 264:84-6.
120. Tisljar, U., and A. J. Barrett. 1990. Thiol-dependent metallo-endopeptidase characteristics of Pz-peptidase in rat and rabbit. Biochem. J. 267:531-3.
121. Tisljar, U., A. C. de Camargo, C. A. da Costa, and A. J. Barrett. 1989. Activity of Pz-peptidase and endo-oligopeptidase are due to the same enzyme. Biochem. Biophys. Res. Commun. 162:1460-4.
122. Tjalsma, H., A. Bolhuis, J. D. Jongbloed, S. Bron, and J. M. van Dijl. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64:515-47.
123. Tjalsma, H., A. Bolhuis, M. L. van Roosmalen, T. Wiegert, W. Schumann, C. P. Broekhuizen, W. J. Quax, G. Venema, S. Bron, and J. M. van Dijl. 1998. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 12:2318-31.
124. Tjalsma, H., M. A. Noback, S. Bron, G. Venema, K. Yamane, and J. M. van Dijl. 1997. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes. J. Biol. Chem. 272:25983-92.
125. Tran, L., X. C. Wu, and S. L. Wong. 1991. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J. Bacteriol. 173:6364-72.
126. Van Wart, H. E., and D. R. Steinbrink. 1981. A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 113:356-65.
127. Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159:811-9.
128. Vimr, E. R., L. Green, and C. G. Miller. 1983. Oligopeptidase-deficient mutants of Salmonella typhimurium. J Bacteriol 153:1259-65.
129. Vincent, B., A. Beaudet, P. Dauch, J. P. Vincent, and F. Checler. 1996. Distinct properties of neuronal and astrocytic endopeptidase 3.4.24.16: a study on differentiation, subcellular distribution, and secretion processes. J. Neurosci. 16:5049-59.
130. Vincent, B., V. Dive, A. Yiotakis, C. Smadja, R. Maldonado, J. P. Vincent, and F. Checler. 1995. Phosphorus-containing peptides as mixed inhibitors of endopeptidase 3.4.24.15 and 3.4.24.16: effect on neurotensin degradation in vitro and in vivo. Br. J. Pharmacol. 115:1053-63.
131. Vincent, B., J. P. Vincent, and F. Checler. 1996. Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin. Brain Res. 709:51-8.
132. Waldburger, C., D. Gonzalez, and G. H. Chambliss. 1993. Characterization of a new sporulation factor in Bacillus subtilis. J. Bacteriol. 175:6321-7.
133. Watanabe, K. 2004. Collagenolytic proteases from bacteria. Appl. Microbiol. Biotechnol. 63:520-6.
134. Wong, S. L., C. W. Price, D. S. Goldfarb, and R. H. Doi. 1984. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma 37 promoter in vivo. Proc. Natl. Acad. Sci. USA 81:1184-8.
135. Wu, X. C., S. Nathoo, A. S. Pang, T. Carne, and S. L. Wong. 1990. Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J. Biol. Chem. 265:6845-50.
136. Wu, X. C., S. Nathoo, A. S. Pang, T. Carne, and S. L. Wong. 1990. Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J Biol Chem 265:6845-50.
137. Wunsch, E., and H. G. Heidrich. 1963. Zur quantitativen Bestimmung der Kollagenase. [On the quantitative determination of collagenase.]. Z. Physiol. Chem. 333:149-151.
138. Xu, D., and J. C. Cote. 2003. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3' end 16S rDNA and 5' end 16S-23S ITS nucleotide sequences. Int. J. Syst. Evol. Microbiol. 53:695-704.
139. Yamin, R., E. G. Malgeri, J. A. Sloane, W. T. McGraw, and C. R. Abraham. 1999. Metalloendopeptidase EC 3.4.24.15 is necessary for Alzheimer's amyloid-beta peptide degradation. J. Biol. Chem. 274:18777-84.
140. Yan, T.-R., N. Azuma, S. Kaminogawa, and K. Yamauchi. 1987. Purification and characterization of a substrate-size-recognizing metalloendopeptidase from Streptococcus cremormis H61. Appl. Environ. Microbiol. 53:2296-2302.
141. Yang, M. Y., E. Ferrari, and D. J. Henner. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160:15-21.
142. Yoon, H. S., and J. W. Golden. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935-8.
143. York, I. A., A. X. Mo, K. Lemerise, W. Zeng, Y. Shen, C. R. Abraham, T. Saric, A. L. Goldberg, and K. L. Rock. 2003. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18:429-40.
144. Yoshihara, K., O. Matsushita, J. Minami, and A. Okabe. 1994. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase. J. Bacteriol. 176:6489-96.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 楊妙芬(1997)。國中教師工作價值觀、工作滿意度、任教職志與其相關因素之研究。屏東師院學報,10,97-132。
2. 黃國隆(1982)。領導方式、工作特性、成就動機、內外控、專斷性與教師工作滿足的關係。國立政治大學教育與心理研究,5,47-76。
3. 許士軍(1977)。工作滿足、個人特徵與組織氣候---文獻探討及實證研究。國立政治大學學報,35,13-56。
4. 陳榮華(1982)。智能不足學生在國中益智班受教成效之比較研究。教育心理學報,15,47-66。
5. 陳木全(1995)。國中體育教師工作滿意之調查研究。建國學報,14,54-106。
6. 郭明德(1995)。國小教師工作滿意度之現況研究。教育資料文摘,36,159-165。
7. 何東墀、張昇鵬(1992)。我國特殊教育師資培育與進修途徑之研究。特殊教育學報,7,85-126。
8. 何東墀(1989)。國民中學益智班教師工作滿意工作壓力與工作倦怠之調查研究。國立台灣教育學院特殊教育學系暨研究所特殊教育學報,4,1-67。
9. 李明堂(1987)。特殊教育教師工作滿足感之比較研究。教育資料文摘,112,148-181。
10. 李文玉(1994)。淺談國小總務處組長之任用。竹市文教,卷10。
11. 吳靜吉、潘養源、丁興祥,(1980)。內外控取向與工作滿足及績效之關係。國立政治大學學報,41期,p62。
12. 吳幼妃(1989)。國小教師之自我實現與工作滿意關係之研究。國立高雄師範學院教育學系及教育研究所教育學刊,8,89-131。