跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:章微微
研究生(外文):Wei-Wei Chang
論文名稱:唾液酸轉移酶抑制劑大豆皂苷與鼠李糖脂對癌細胞作用機制之探討
論文名稱(外文):Effects of two sialyltransferase inhibitors,soyasaponin I and rhamnolipids, on cancer cells.
指導教授:蔡英傑蔡英傑引用關係
指導教授(外文):Ying-Chieh Tsai
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:137
中文關鍵詞:唾液酸轉移酶唾液酸轉移大豆皂苷鼠李糖脂綠膿桿菌
外文關鍵詞:sialyltransferasesialic acidmetastasissoyasaponin IrhamnolipidsPseudomonas aeruginosa
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
唾液酸轉移酶所催化的反應是將CMP-sialic acid中的唾液酸 (sialic acid) 轉移到醣共軛物醣鏈的末端。此種含唾液酸的醣共軛物不僅扮演基本結構的角色,更是參與了細胞與細胞、微生物與細胞間的交互作用。而且,唾液酸表現量的增加與腫瘤發生和轉移呈正相關。所以,唾液酸轉移酶抑制劑具有開發為抗癌藥物的潛力。
本實驗室先前已發現大豆萃取液中所含的大豆皂苷(soyasaponin I,Ssa I) 具有抑制唾液酸轉移酶的活性, Ssa I可以抑制黑色素瘤細胞株B16F10之alpha2,3-唾液酸表現量,並抑制B16F10細胞之遷移能力。本論文研究證實經Ssa I處理後B16F10細胞表面除了alpha2,3-唾液酸表現量有明顯下降外,其他多種醣鏈表現量並無明顯改變。而且,B16F10細胞經Ssa I處理後對於細胞外間質的貼附力增加。利用實驗性轉移動物模式評估細胞轉移能力,發現經Ssa I前處理後的B16F10細胞轉移能力減弱。綜合上述結果,推測alpha2,3-唾液酸可能在B16F10細胞轉移過程中扮演了重要的角色。
此外,本實驗室以alpha2,3-唾液酸轉移酶 (ST3Gal I) 為標的,使用篩選微生物萃取液的策略繼續開發唾液酸轉移酶抑制劑,結果發現Pseudomonas aeruginosa 5565醱酵液中所含的鼠李糖脂(rhamnolipids)類化合物,2-O-alpha-L-rhamnopyranosyl-alpha-L- rhamnopyranosyl-beta-hydroxyldecanoyl-beta-hydroxyldodecanoate (RhaRhaC10C12) 和2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxyldodecanoyl-beta-hydroxyldecanoate (RhaRhaC12C10) 混合物具有抑制活性。其對於唾液酸轉移酶具有抑制專一性,而對於岩藻醣轉移酶及半乳糖轉移酶不具抑制活性。以酵素動力學的方式探討RhaRha(C10C12)的抑制模式,發現對受質CMP-Neu5Ac來說是屬於競爭型抑制劑,抑制常數為25.7 mM;對受質LacNAc來說是屬於非競爭抑制劑,抑制常數為16.3 mM。以所購買的rhamnolipids (JBR599) 處理A549肺癌細胞株後,發現a2,3-唾液酸表現量下降,相反的,糖脂質asialo-GM1表現量增加。已知P. aeruginosa是肺部感染中主要的致病菌之一,它的纖毛 (pili) 會與肺上皮細胞表面含GalNAcbeta1-4Gal雙醣結構的糖共軛物 (如:asialo-GM1) 產生交互作用而黏附在細胞上。進一步探討rhamnolipids是否會改變P. aeruginosa對細胞的黏附能力,結果顯示經rhamnolipids (JBR599) 處理後的A549細胞上所黏附的P. aeruginosa數量比控制組多。推測在寄主體內,P. aeruginosa 所分泌的rhamnolipids能改變細胞表面的醣鏈組成有關,進而有助於P. aeruginosa的感染。
The transfer of sialic acids to the non-reducing terminal positions on sugar chains of glycoconjugates is catalyzed by sialyltransferases (STs). These sialylated glycoconjugates not only have a role in providing structural components, but also in mediating cell-cell and cell-microbe interactions. Additionally, increased sialylation is correlated with oncogenic transformation and metastatic potential. Therefore, ST inhibitors may be potentially valuable as anticancer and antimetastatic agents.
Previously, our laboratory has found a ST inhibitor, soyasaponin I (Ssa I) from soybean extract. Ssa I can reduce the expression of the alpha2,3-linked sialic acids on B16F10 melanoma cells, and inhibit the migration ability of B16F10 cells. This study demonstrated that Ssa I only specifically inhibited the expression of alpha2,3-linked sialic acids without affecting other glycans on B16F10 cells. Moreover, Ssa I can enhance cell adhesion to extracellular matrix proteins. A pulmonary metastasis assay demonstrated that alteration of glycosylation in this way significantly reduced the ability of tumor cells to distribute to the lungs of mice. Collectively, these findings suggested that alpha2,3-linked sialic acids may play an important role in metastasis potential of B16F10 cells.
Additionally, through screening of microbial extracts for ST inhibitors in our laboratory, we found that the extract of fermentation broth from Pseudomonas aeruginosa 5565 had strong inhibitory activity. The active compound was purified and identified as the mixture of two rhamnolipid homologs, 2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxyldecanoyl-beta- hydroxyldodecanoate (RhaRhaC10C12) and 2-O-alpha-L-rhamnopyranosyl-alpha-L-rhamnopyranosyl-beta-hydroxyldodecanoyl-beta-hydroxyldecanoate (RhaRhaC12C10). RhaRha(C10C12) only specifically inhibited ST activity, without affecting fucosyltransferases and galactosyltransferase activity. Kinetic analysis indicated that RhaRha(C10C12) is a competitive inhibitor with respect to the donor CMP-Neu5Ac and a noncompetitive one with respect to the acceptor substrate LacNAc with Ki of 25.7 and 16.3 mM, respectively. The commercial rhamnolipid mixture (JBR599) was used to treat A549 lung cancer cell to determine whether JBR599 altered A549 cell surface glycosylation, the result showed that the expression of the a2,3-linked sialic acids on treated cell surface was reduced significantly. On the contrary, the expression of the asialoGM1 was increased significantly. P. aeruginosa is a major pathogen in lung bacterial colonization. It can adhere to epithelial cells via pili, which recognize a GalNAcbeta1-4Gal disaccharide, exposed in asialylated glycoconjugates such as asialo GM1. Our results also demonstrated that the number of adherent P. aeruginosa on rhamnolipid-treated A549 cells was increased compared with control. It suggests that chronic exposure to rhamnolipids may alter the glycans profile on host cells, and subsequently enhance P. aeruginosa adhesion to host cells and spreading in vivo.
目錄

中文摘要
英文摘要
縮寫表
目錄
第一章、緒論------------------------------------------ 1
第一節、 醣化作用 (glycosylation)--------------------- 1
第二節、 唾液酸--------------------------------------- 2
第三節、 唾液酸轉移酶(sialyltransferases)----------- 4
第四節、 唾液酸和細胞或微生物間的交互作用與其在生理或
病理上的意義--------------------------------- 6
第五節、 唾液酸和唾液酸轉移酶與癌症的關係------------- 9
第六節、 大豆皂苷 (soyasaponins)----------------------13
第七節、 外源凝集素 (lectins)-------------------------14
第八節、 癌症惡性轉移---------------------------------14
第九節、 研究動機及研究流程---------------------------16
第二章、實驗材料與方法--------------------------------18
第一節、 實驗材料與儀器-------------------------------18
一、 培養基成分-----------------------------------18
二、 菌種、細胞株和小鼠---------------------------18
三、 外源凝集素、抗體及螢光染劑-------------------19
四、 試藥-----------------------------------------20
五、 層析管柱之材料-------------------------------20
六、 酵素-----------------------------------------21
七、 儀器-----------------------------------------21
第二節、 實驗方法-------------------------------------21
一、 Ssa I之分離與純化----------------------------22
二、 小鼠黑色素瘤細胞株B16F10之培養---------------22
三、 以Ssa I處理B16F10細胞------------------------22
四、 流式細胞儀分析細胞表面醣質含量---------------23
五、 B16F10細胞貼附細胞外間質蛋白能力分析---------23
六、 C57BL/6J小鼠肺轉移腫瘤模式-------------------24
七、 抑制劑對於alpha2,3-唾液酸轉移酶(ST3Gal I)的
抑制活性分析---------------------------------24
八、 抑制劑對於其他醣轉移酶的抑制活性分析---------25
九、 篩選具生產alpha2,3-唾液酸轉移酶抑制劑之菌株--26
十、 大量醱酵培養生產活性物質---------------------26
十一、 菌種鑑定-------------------------------------27
十二、 活性物質之分離與純化-------------------------27
十三、 結構鑑定-------------------------------------28
十四、 唾液酸轉移酶螢光受質Galbeta1,4GlcNAc-coumarin
的合成---------------------------------------28
十五、 以酵素動力學來探討抑制劑之作用機制-----------29
十六、 酵素動力學分析-------------------------------30
十七、 將所購買的rhamnolipids (JBR599) 中之主要成分
做粗分離-------------------------------------31
十八、 人類肺癌細胞A549之培養-----------------------31
十九、 以rhamnolipids (JBR599)處理A549細胞----------31
二十、 Rhamnolipids (JBR599) 對於A549細胞毒性之分析-32
二十一、 P. aeruginosa PAO1之培養---------------------32
二十二、 P. aeruginosa PAO1細菌黏附能力分析-----------32
二十三、 A549細胞遷移能力分析-------------------------33
二十四、 統計分析-------------------------------------34
第三章、結果------------------------------------------35
第一節、 Ssa I對於B16F10細胞表面醣共軛物表現之影響----35
第二節、 Ssa I對於B16F10細胞與細胞外間質蛋白貼附能力
之影響---------------------------------------35
第三節、 Ssa I對於B16F10細胞在實驗性轉移動物模式中轉
移能力之影響---------------------------------36
第四節、 微生物醱酵液之再次篩選-----------------------36
第五節、 大量醱酵培養---------------------------------37
第六節、 菌種鑑定-------------------------------------38
第七節、 活性物質的分離與純化-------------------------39
第八節、 活性物質結構之鑑定---------------------------40
第九節、 RhaRha(C10C12)對於醣轉移酶抑制能力之分析-----42
第十節、 RhaRha(C10C12)抑制ST3Gal III之作用機制-------43
第十一節、Rhamnolipids (JBR599) 對於肺癌細胞株A549
之毒殺能力----------------------------------44
第十二節、Rhamnolipids (JBR599) 對於A549細胞表面醣
共軛物表現之影響----------------------------45
第十三節、Rhamnolipids (JBR599) 對於P. aeruginosa
與A549細胞黏附作用之影響--------------------45
第十四節、Rhamnolipids (JBR599) 對於A549遷移能力
之影響--------------------------------------46
第四章、討論------------------------------------------47
第一節、 Ssa I對B16F10細胞表面醣共軛物表現之探討------47
第二節、 Ssa I促進B16F10細胞與細胞外間質之間貼附
能力的探討-----------------------------------47
第三節、 實驗性轉移動物模型之探討---------------------48
第四節、 比較已知抑制唾液酸轉移酶活性的策略-----------49
第五節、 唾液酸轉移酶抑制劑篩選系統-------------------50
第六節、 活性物質分離與純化 ---------------------------51
第七節、 Rhamnolipids之相關研究-----------------------53
第八節、 RhaRha(C10C12)對多種醣轉移酶之抑制活性的探討-54
第九節、 以酵素動力學探討RhaRha(C10C12)抑制ST3Gal III
的模式---------------------------------------55
第十節、 多種唾液酸轉移酶抑制劑之比較-----------------56
第十一節、Rhamnolipids (JBR599) 對肺癌細胞株A549之毒
殺性----------------------------------------58
第十二節、Rhamnolipids (JBR599) 對A549細胞表面醣共軛
物之影響 ------------------------------------58
第十三節、Rhamnolipids (JBR599) 促進P. aeruginosa與
A549細胞之間的黏附能力之探討----------------59
第十四節、Rhamnolipids (JBR599) 對A549細胞遷移能力之
影響----------------------------------------61
第五章、參考文獻--------------------------------------62
表一~十一 ---------------------------------------------75
圖一~圖十五-------------------------------------------88
附圖一~三十二----------------------------------------105
文獻發表
Baker, M.A., Kanani, A., Brockhausen, I., Schachter, H., Hindenburg, A. and Taub, R.N.(1987)Presence of cytidine 5'-monophospho-N-acetylneuraminic acid:Gal beta 1-3GalNAc-R alpha(2-3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. Cancer Res., 47, 2763-6.
Beal, R. and Betts, W.B. (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol., 89, 158-68.
Bennink, M.R. (2001) Dietary soy reduces colon carcinogenesis in human and rats. Soy and colon cancer. Adv. Exp. Med. Biol., 492, 11-7.
Boles, B.R., Thoendel, M. and Singh, P.K. (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol., 57, 1210-23.
Bratosin, D., Mazurier, J., Debray, H., Lecocq, M., Boilly, B., Alonso, C., Moisei, M., Motas, C. and Montreuil, J. (1995) Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconjugate J.,12, 258–67.
Bratosin, D., Mazurier, J., Tissier, J.P., Estaquier, J., Huart, J.J., Ameisen, J.C., Aminoff, D. and Montreuil, J. (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. Biochimie, 80, 173–95.
Bresalier, R.S., Ho, S.B., Schoeppner, H.L., Kim, Y.S., Sleisenger, M.H., Brodt, P. and Byrd, J.C.(1996)Enhanced sialylation of mucin-associated carbohydrate structures in human colon cancer metastasis. Gastroenterology, 110, 1354-67.
Brockhausen, I., Yang, J.M., Burchell, J., Whitehouse, C. and Taylor-Papadimitriou, J.(1995)Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur. J. Biochem., 233, 607-17.
Burchell, J., Poulsom, R., Hanby, A., Whitehouse, C., Cooper, L., Clausen, H., Miles, D. and Taylor-Papadimitriou, J.(1999)An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology, 9, 1307-11.
Cachia, P.J. and Hodges, R.S. (2003) Synthetic peptide vaccine and antibody therapeutic development: prevention and treatment of Pseudomonas aeruginosa. Biopolymers. 71, 141-68.
Cameron, M.D., Schmidt, E.E., Kerkvliet, N., Nadkarni, K.V., Morris, V.L., Groom, A.C., Chambers, A.F. and MacDonald, I.C. (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res., 60, 2541-6.
Cao, Z., Zhao, Z., Mohan, R., Alroy, J., Stanley, P. and Panjwani, N. (2001) Role of the Lewis(x) glycan determinant in corneal epithelial cell adhesion and differentiation. J. Biol. Chem., 276, 21714-23.
Chang, K.H., Lee, L., Chen, J. and Li, W.S. (2006) Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors. Chem Commun (Camb), 6, 629-31.
Collard, J.G., Schijven, J.F., Bikker, A., La Riviere, G., Bolscher, J.G. and Roos, E.(1986)Cell surface sialic acid and the invasive and metastatic potential of T-cell hybridomas. Cancer Res., 46, 3521-7.
Comolli, J.C., Waite, L.L., Mostov, K.E. and Engel, J.N. (1999) Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. Infect Immun., 67, 3207-14.
Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318-22.
Currie, D.C., Pavia, D., Agnew, J.E., Lopez-Vidriero, M.T., Diamond, P.D., Cole, P.J. and Clarke, S.W. (1987) Impaired tracheobronchial clearance in bronchiectasis. Thorax., 42, 126-30.
Dall'Olio, F., Chiricolo, M. and Lau, J.T. (1999) Differential expression of the hepatic transcript of beta-galactoside alpha2,6-sialyltransferase in human colon cancer cell lines. Int. J. Cancer, 81, 243-7.
Dall'Olio, F. (2000) The siayl-2,6-lactosaminyl-structure: biosynthesis and functional role. Glycoconj. J., 17, 669-76.
Dall'Olio, F., Chiricolo, M., Ceccarelli, C., Minni, F., Marrano, D. and Santini, D. (2000) Beta-galactoside alpha2,6-sialyltransferase in human colon cancer: contribution of multiple transcripts to regulation of enzyme activity and reactivity with Sambucus nigra agglutinin. Int. J. Cancer, 88, 58-65.
Datta, A.K. and Paulson, J.C. (1995) The sialyltransferase "sialylmotif" participates in binding the donor substrate CMP-NeuAc. J. Biol. Chem., 270, 1497–500.
Datta, A.K. and Paulson, J.C. (1997) Sialylmotifs of sialyltransferases. Indian J. Biochem. Biophys., 34, 157–65.
Datta, A.K., Sinha, A., and Paulson, J.C. (1998) Mutation of the sialyltransferase S-sialylmotif alters the kinetics of the donor and acceptor substrates. J. Biol. Chem., 273, 9608–14.
de Koster, C.G., Vos, B., Versluis, C., Heerma, W. and Haverkamp, J. (1994) High-performance thin-layer chromatography/fast atom bombardment (tandem) massspectrometry of Pseudomonas rhamnolipids. Biol Mass Spectrom. 23, 179-85.
Dennis, J., Waller, C., Timpl, R. and Schirrmacher, V. (1982) Surface sialic acid reduces attachment of metastatic tumour cells to collagen type IV and fibronectin. Nature, 300, 274-6.
Dimitroff, C.J., Pera, P., Dall'Olio, F., Matta, K.L., Chandrasekaran, E.V., Lau, J.T. and Bernacki, R.J. (1999) Cell surface n-acetylneuraminic acid alpha2,3-galactoside -dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Commun., 256, 631-6.
Drickamer, K. (1993) A conserved disulphide bond in sialyltransferases. Glycobiology, 3, 2–3.
Ellington, A.A., Berhow, M.A. and Singletary, K.W. (2005) Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins. Carcinogenesis, 26, 159-67.
Ellington, A.A., Berhow, M.A. and Singletary, K.W. (2006) Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis, 27, 298-306.
Engers, R. and Gabbert, H.E. (2000) Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J. Cancer Res. Clin. Oncol., 126, 682-92.
Espinosa-Urgel, M. (2003) Resident parking only: rhamnolipids maintain fluid channels in biofilms. J. Bacteriol., 185, 699-700.
Fukushima, K., Hara-Kuge, S., Seko, A., Ikehara, Y. and Yamashita, K. (1998) Elevation of alpha2-->6 sialyltransferase and alpha1-->2 fucosyltransferase activities in human choriocarcinoma. Cancer Res., 58, 4301-6.
Fuster, M.M. and Esko, J.D. (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer, 5, 526-42.
Gao, L., Linden, L., Parsons, N.J., Cole, J.A. and Smith, H. (2000) Uptake of metabolites by gonococci grown with lactate in a medium containing glucose: evidence for a surface location of the sialyltransferase. Microb. Pathogenesis, 28, 257–66.
Geremia, R.A., Harduin-Lepers, A. and Delannoy, P. (1997) Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action. Glycobiology, 7, v–vii.
Gillespie, W., Kelm, S. and Paulson, J.C. (1992) Cloning and expression of the Gal beta1,3GalNAc alpha2,3-sialyltransferase. J. Biol. Chem., 267, 21004–10.
Goss, P.E., Baker, M.A., Carver, J.P. and Dennis, J.W. (1995) Inhibitors of carbohydrate processing: A new class of anticancer agents. Clin. Cancer Res. 1, 935-44.
Graham, A., Steel, D.M., Wilson, R., Cole, P.J., Alton, E.W. and Geddes, D.M. (1993) Effects of purified Pseudomonas rhamnolipids on bioelectric properties of sheep tracheal epithelium. Exp. Lung Res., 19, 77-89.
Gurfinkel, D.M. and Rao, A.V. (2002) Determination of saponins in legumes by direct densitometry. J. Agric. Food Chem., 50, 426-30.
Hakomori, S. (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv. Cancer Res., 52, 257-331.
Harduin-Lepers, A., Stokes, D.C., Steelant, W.F., Samyn-Petit, B., Krzewinski-Recchi, M.A., Vallejo-Ruiz, V., Zanetta, J.P., Auge, C. and Delannoy, P. (2000) Cloning, expression and gene organization of a human Neu5Ac alpha2-3Gal beta1-3GalNAc alpha2,6-sialyltransferase: hST6GalNAc IV. Biochem. J., 352, 37–48.
Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S. and Delannoy, P. (2001) The human sialyltransferase family. Biochimie, 83, 727-37.
Harvey, B.E., Toth, C.A., Wagner, H.E., Steele, G.D. Jr and Thomas, P. (1992) Sialyltransferase activity and hepatic tumor growth in a nude mouse model of colorectal cancer metastases. Cancer Res., 52, 1775-9.
Haussler, S., Rohde, M., von Neuhoff, N., Nimtz, M. and Steinmetz, I. (2003) Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infect. Immun., 71, 2970-5.
Hayashi, K., Hayashi, H., Hiraoka, N. and Ikeshiro, Y. (1997) Inhibitory activity of soyasaponin II on virus replication in vitro. Planta Med., 63, 102-5.
Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science, 291, 2364-9.
Higai, K., Masuda, D., Matsuzawa, Y., Satoh, T. and Matsumoto, K. (1999) A fluorometric assay for glycosyltransferase activities using sugars aminated and tagged with 7-hydroxycoumarin-3-carboxylic acid as substrates and high performance liquid chromatography. Biol. Pharm. Bull., 22, 333-8.
Hirayama, T. and Kato, I. (1982) Novel methyl rhamnolipids from Pseudomonas aeruginosa. FEBS Lett., 139, 81-5.
Hirst, G.K. (1942) Adsorption of influenza hemagglutinins and virus by red blood cells. J. Exp. Med., 76, 195–209.
Hsu, C.C., Lin, T.W., Chang, W.W., Wu, C.Y., Lo, W.H., Wang, P.H. and Tsai, Y.C. (2005) Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol. Oncol., 96, 415-22.
Ikeda, T., Udayama, M., Okawa, M., Arao, T., Kinjo, J. and Nohara, T. (1998) Partial hydrolysis of soyasaponin I and the hepatoprotective effects of the hydrolytic products. Study of the structure-hepatoprotective relationship of soyasapogenol B analogs. Chem. Pharm. Bull. (Tokyo), 46, 359-61.
Imundo, L., Barasch, J., Prince, A. and Al-Awqati, Q. (1995) Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc. Natl. Acad. Sci. USA, 92, 3019-23.
Jancik, J.M., Schauer, R., Andres, K.H. and von Düring, M. (1978) Sequestration of neuraminidase-treated erythrocytes. Studies on its topographic, morphologic and immunologic aspects. Cell Tissue Res., 186, 209–26.
Jeanneau, C., Chazalet, V., Auge, C., Soumpasis, D.M., Harduin-Lepers, A., Delannoy, P., Imberty, A. and Breton, C. (2004) Structure-function analysis of the human sialyltransferase ST3Gal I: role of N-glycosylation and a novel conserved sialylmotif. J. Biol. Chem., 279, 13461–8.
Jin, M., Yang, Y., Su, B. and Ren, Q. (2006) Rapid quantification and characterization of soyasaponins by high-performance liquid chromatography coupled with electrospray mass spectrometry. J. Chromatogr. A., 1108, 31-7.
Julien, S., Adriaenssens, E., Ottenberg, K., Furlan, A., Courtand, G., Vercoutter-Edouart, A.S., Hanisch, F.G., Delannoy, P. and Le Bourhis, X. (2006) ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology, 6, 54-64.
Kaneko, Y., Yamamoto, H., Kersey, D.S., Colley, K.J., Leestma, J.E. and Moskal, J.R. (1996) The expression of Gal beta 1,4GlcNAc alpha 2,6 sialyltransferase and alpha 2,6-linked sialoglycoconjugates in human brain tumors. Acta. Neuropathol., 91, 284-92.
Kannagi, R., Izawa, M., Koike, T., Miyazaki, K. and Kimura, N. (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci., 95, 377-84.
Karlsson, K.A., Angstrom, J., Bergstrom, J. and Lanne, B. (1992) Microbial interaction with animal cell surface carbohydrates. APMIS Suppl., 27, 71-83.
Kelm, S. and Schauer, R. (1988) The galactose-recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule. Biol. Chem. Hoppe-Seyler, 369, 693–704.
Kinjo, J., Hirakawa, T., Tsuchihashi, R., Nagao, T., Okawa, M., Nohara, T. and Okabe, H. (2003) Hepatoprotective constituents in plants. 14. Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells. Biol. Pharm. Bull., 26, 1357-60.
Kirkeby, S. and Moe, D. (2005) Analyses of Pseudomonas aeruginosa lectin binding to alpha-galactosylated glycans. Curr. Microbiol., 50, 309-13.
Kitagawa, H. and Paulson, J.C. (1994) Cloning of a novel alpha2,3-sialyltransferase that sialylates glycoprotein and glycolipid carbohydrate groups. J. Biol. Chem., 269, 1394–401.
Kitazume-Kawaguchi, S., Kabata, S. and Arita, M. (2001) Differential biosynthesis of polysialic or disialic acid structure by ST8Sia II and ST8Sia IV. J. Biol. Chem., 276, 15696–703.
Kleineidam, R.G., Schmelter, T., Schwarz, R.T. and Schauer, R. (1997) Studies on the inhibition of sialyl- and galactosyltransferases. Glycoconj. J., 14, 57-66.
Kolb, H., Schudt, C., Kolb-Bachofen, V. and Kolb, H.A. (1978) Cellular recognition by rat liver cells of neuraminidase-treated erythrocytes. Demonstration and analysis of cell contacts. Exp. Cell Res., 113, 319–25.
Kollberg, H., Mossberg, B., Afzelius, B.A., Philipson, K. and Camner, P. (1978) Cystic fibrosis compared with the immotile-cilia syndrome. A study of mucociliary clearance, ciliary ultrastructure, clinical picture and ventilatory function. Scand J. Respir. Dis., 59, 297-306.
Konoshima, T., Kokumai, M., Kozuka, M., Tokuda, H., Nishino, H. and Iwashima, A. (1992) Anti-tumor-promoting activities of afromosin and soyasaponin I isolated from Wistaria brachybotrys. J. Nat. Prod., 55, 1776-8.
Kownatzki, R., Tummler, B. and Doring, G. (1987) Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet, 1, 1026-7.
Kudo, T., Ikehara, Y., Togayachi, A., Morozumi, K., Watanabe, M., Nakamura, M., Nishihara, S. and Narimatsu, H. (1998) Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab. Invest., 78, 797-811.
Laidler, P., Litynska, A., Hoja-Lukowicz, D., Labedz, M., Przybylo, M., Ciolczyk-Wierzbicka, D., Pochec, E., Trebacz, E. and Kremser, E. (2006) Characterization of glycosylation and adherent properties of melanoma cell lines. Cancer Immunol. Immunother., 55, 112-8.
Lau, G.W., Hassett, D.J. and Britigan, B.E. (2005) Modulation of lung epithelial functions by Pseudomonas aeruginosa. Trends Microbiol., 13, 389-97.
Lee, K.Y., Kim, H.G., Hwang, M.R., Chae, J.I., Yang, J.M., Lee, Y.C., Choo, Y.K., Lee, Y.I., Lee, S.S. and Do, S.I. (2002) The Hexapeptide inhibitor of Galbeta 1,3GalNAc-specific alpha 2,3-sialyltransferase as a generic inhibitor of sialyltransferases. J. Biol. Chem., 277, 49341-51.
Lee, Y.C., Kurosawa, N., Hamamoto, T., Nakaoka, T. and Tsuji, S. (1993) Molecular cloning and expression of Gal beta 1,3GalNAc alpha2,3-sialyltransferase from mouse brain. Eur. J. Biochem., 216, 377-85.
Lee, Y.C., Kojima, N., Wada, E., Kurosawa, N., Nakaoka, T., Hamamoto, T. and Tsuji, S. (1994) Cloning and expression of cDNA for a new type of Galbeta1, 3GalNAc alpha 2,3 sialyltransferase. J. Biol. Chem., 269, 10028–33.
Lin, T.W., Chang, W.W., Chen, C.C. and Tsai, Y.C. (2005) Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem. Biophys. Res. Commun., 331, 953-7.
Livingston, B.D. and Paulson, J.C. (1993) Polymerase chain reaction cloning of a developmentally regulated member of the sialyltransferase gene family. J. Biol. Chem., 268, 11504–7.
Lloyd, K.O., Burchell, J., Kudryashov, V., Yin, B.W. and Taylor-Papadimitriou, J. (1996) Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. J. Biol. Chem., 271, 33325-34.
Lowe, J.B. (2003) Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol., 15, 531-8.
McClure, C.D. and Schiller, N.L. (1996) Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr. Microbiol., 33, 109-17.
Nitschke, M., Costa, S.G., Haddad, R., Goncalves, L.A., Eberlin, M.N. and Contiero, J. (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog., 21, 1562-6.
Oda, K., Matsuda, H., Murakami, T., Katayama, S., Ohgitani, T. and Yoshikawa, M. (2003) Relationship between adjuvant activity and amphipathic structure of soyasaponins. Vaccine, 21, 2145-51.
Ogawa, J.I., Inoue, H. and Koide, S. (1997) alpha-2,3-Sialyltransferase type 3N and alpha-1,3-fucosyltransferase type VII are related to sialyl Lewis(x) synthesis and patient survival from lung carcinoma. Cancer, 79, 1678-85.
Oh, Y.J. and Sung, M.K. (2001) Soybean saponins inhibit cell proliferation by suppressing PKC activation and induce differentiation of HT-29 human colon adenocarcinoma cells. Nutr. Cancer, 39, 132-8.
Pan, Y.T. and Elbein, A.D. (1995) How can N-linked glycosylation and processing inhibitors be used to study carbohydrate synthesis and function. Montreuil, J., Schachter, J.F.G, and Vliegenthart (Eds) Elsevier Science B.V. Glycoproteins, 415-54.
Parsek, M.R. and Singh, P.K. (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol., 57, 677-701.
Passaniti, A. and Hart, G.W. (1988) Cell surface sialylation and tumor metastasis. Metastatic potential of B16 melanoma variants correlates with their relative numbers of specific penultimate oligosaccharide structures. J. Biol. Chem., 263, 7591-603.
Perrella, F.W. (1998) EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem., 174, 437-447.
Philbrick, D.J., Bureau, D.P., Collins, F.W. and Holub, B.J. (2003) Evidence that soyasaponin Bb retards disease progression in a murine model of polycystic kidney disease. Kidney Int., 63, 1230-9.
Pochec, E., Litynska, A., Amoresano, A. and Casbarra, A. (2003) Glycosylation profile of integrin α3β1 changes with melanoma progression. Biochim. Biophys. Acta., 1643, 113-23.
Raza, Z.A., Rehman, A., Khan, M.S. and Khalid, Z.M. (2006) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation, 61, 87-94.
Recchi, M.A., Hebbar, M., Hornez, L., Harduin-Lepers, A., Peyrat, J.P. and Delannoy, P. (1998) Multiplex reverse transcription polymerase chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer Res., 58, 4066-70.
Read, R.C., Roberts, P., Munro, N., Rutman, A., Hastie, A., Shryock, T., Hall, R., McDonald-Gibson, W., Lund, V. and Taylor, G. (1992) Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J. Appl. Physiol., 72, 2271-7.
Rhim, A.D., Stoykova, L., Glick, M.C. and Scanlin, T.F. (2001) Terminal glycosylation in cystic fibrosis (CF): A review emphasizing the airway epithelial cell. Glycoconj. J., 18, 649-59.
Saiman, L. and Prince, A. (1993) Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J. Clin. Invest., 92, 1875-80.
Schaub, C., Muller, B. and Schmidt, R.R. (1998) New sialyltransferase inhibitors based on CMP-quinic acid: development of a new sialyltransferase assay. Glycoconj. J., 15, 345-54.
Schauer, R. (2004) Victor Ginsburg's influence on my research of the role of sialic acids in biological recognition. Arch. Biochem. Biophys., 426, 132-41.
Schmidt, M.A., Riley, L.W. and Benz, I. (2003) Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol., 11, 554-61.
Schneider, F., Kemmner, W., Haensch, W., Franke, G., Gretschel, S., Karsten, U. and Schlag, P.M. (2001) Overexpression of sialyltransferase CMP-sialic acid:Galbeta 1,3 GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res., 61, 4605-11.
Schroder, P.N. and Giannis, A. (1999) From substrate to transition state analogues: The frist potent inhibitor of sialyltransferase. Angew. Chem. Int. Ed., 38, 1379-80.
Seales, E.C., Jurado, G.A., Brunson, B.A., Wakefield, J.K., Frost, A.R. and Bellis, S.L. (2005) Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res., 65, 4645-52.
Shryock, T.R., Silver, S.A., Banschbach, M.W. and Kramer, J.C. (1984) Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil migration. Curr. Microbiol., 10, 323-8.
Soberon-Chavez, G., Lepine, F. and Deziel, E. (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 68, 718-25.
Springer, T.A. (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76, 301-14.
Stoykova, L.I. and Glick, M.C. (1995) Purification of an alpha-2,8-sialyltransferase, a potential initiating enzyme for the biosynthesis of polysialic acid in human neuroblastoma cells. Biochem. Biophys. Res. Commun. 217, 777-83.
Sung, M.K., Kendall, C.W., Koo, M.M. and Rao, A.V. (1995a) Effect of soybean saponins and gypsophilla saponin on growth and viability of colon carcinoma cells in culture. Nutr. Cancer, 23, 259-70.
Sung, M.K., Kendall, C.W. and Rao, A.V. (1995b) Effect of soybean saponins and gypsophila saponin on morphology of colon carcinoma cells in culture. Food Chem. Toxicol., 33, 357-66.
Suzuki, K., Doi, S., Yahara, S. and Uyeda, M. (2003) 2070-DTI, a topoisomerase inhibitor produced by Streptomyces sp. strain No.2070. J. Enzyme Inhib. Med. Chem., 18, 497-503.
Suzuki, O., Nozawa, Y., Kawaguchi, T and Abe, M. (2002) UDP-GlcNAc2-epimerase regulates cell surface sialylation and cell adhesion to extracellular matrix in Burkitt's lymphoma. Int. J. Oncol., 20, 1005-11.
Takano, R., Muchmore, E. and Dennis, J.W. Sialylation and malignant potential in tumour cell glycosylation mutants. Glycobiology, 4, 665-74.
Tanaka, F., Otake, Y., Nakagawa, T., Kawano, Y., Miyahara, R., Li, M., Yanagihara, K., Inui, K., Oyanagi, H., Yamada, T., Nakayama, J., Fujimoto, I., Ikenaka, K. and Wada, H. (2001) Prognostic significance of polysialic acid expression in resected non-small cell lung cancer. Cancer Res., 61, 1666-70.
Tanner, M.E. (2005) The enzymes of sialic acid biosynthesis. Bioorg. Chem., 33, 216-28.
Tei, K., Kawakamin-Kimura N., Taguchi, O., Kumamaoto K., Higashiyama, S., Taniguchi, N., Toda, K., Kawata, R., Hisa, Y. and Kannagi, R. (2002) Roles of cell adhesion molecules in tumor angiogenesis induced by co-transplantation of cancr and endothelial cells to nude rats. Cancer Res., 62, 6289-96.
Thiagarajan, D.G., Bennink, M.R., Bourquin, L.D. and Kavas, F.A. (1998) Prevention of precancerous colonic lesions in rats by soy flakes, soy flour, genistein and calcium. Am. J. Clin. Nur., 68, 1394S-1399S.
Thomas, R. and Brooks, T. (2004) Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J. Med. Microbiol., 53, 833-40.
Traving, C. and Schauer, R. (1998) Structure, function and metabolism of sialic acids. Cell. Mol. Life Sci., 54, 1330-49.
Tulsiani, D.R. (2000) Carbohydrates mediate sperm-ovum adhesion and triggering of the acrosome reaction. Asian J. Androl., 2, 87-97.
van Die, I. and Cummings, R.D. (2006) Glycans modulate immune responses in helminth infections and allergy. Chem. Immunol. Allergy., 90, 91-112.
Varki, A., Curmmings, R., Esko, J., Freeze, H., Harth, G. and Marth, J. (1999) Essentials of glycobiology, 196-7.
Vimr, E. and Lichtensteiger, C. (2002) To sialylate, or not to sialylate: That is the question. Trends Microbiol. 10, 254-7.
von Itzstein, M., Wu, W.Y. and Jin, B. (1994) The synthesis of 2,3-didehydro-2,4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor. Carbohydr. Res., 259, 301-5.
Wagner, H.E., Thomas, P., Wolf, B.C., Rapoza, A., Steele, G. Jr. (1990) Inhibition of sialic acid incorporation prevents hepatic metastases. Arch. Surg., 125, 351-4.
Wang, P.H. (2005a) Altered glycosylation in cancer: sialic acids and sialyltransferase. J. Cancer Mol., 1, 73-81.
Wang, P.H., Lee, W.L., Juang, C.M., Yang, Y.H., Lo, W.H., Lai, C.R., Hsieh, S.L. and Yuan, C.C. (2005b) Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol. Oncol., 99, 631-9.
Wen, D.X., Livingston, B.D., Medzihradszky, K.F., Kelm, S., Burlingame, A.L., and Paulson, J.C. (1992) Primary structure of Gal ß1,3 (4) GlcNAc 2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J. Biol. Chem., 267, 21011–9.
Wu, C.Y., Hsu, C.C., Chen, S.T. and Tsai, Y.C. (2001) Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun., 284, 466-9.
Yamada, N., Chung, Y.S., Takatsuka, S., Arimoto, Y., Sawada, T., Dohi, T. and Sowa, M. (1997) Increased sialyl Lewis A expression and fucosyltransferase activity with acquisition of a high metastatic capacity in a colon cancer cell line. Br. J. Cancer, 76, 582-7.
Yamamoto, H., Kaneko, Y., Vandermulen, D., Kersey, D., Mkrdichian, E., Cerullo, L., Leestma, J. and Moskal, J.R. (1995) The expression of CMP-NeuAc: Gal beta 1,4GlcNAc alpha 2,6 sialyltransferase [EC 2.4.99.1] and glycoproteins bearing alpha 2,6-linked sialic acids in human brain tumours. Glycoconj. J., 12, 848-56.
Yamamoto, H., Saito, T., Kaneko, Y., Kersey, D., Yong, V.W., Bremer, E.G., Mkrdichian, E., Cerullo, L., Leestma, J. and Moskal, J.R. (1997) alpha2,3-sialyltransferase mRNA and alpha2,3-linked glycoprotein sialylation are increased in malignant gliomas. Brain Res., 755, 175-9.
Yamashiro, S., Okada, M., Haraguchi, M., Furukawa, K., Lloyd, K.O., Shiku, H. and Furukawa, K. (1995) Expression of alpha 2,8-sialyltransferase (GD3 synthase) gene in human cancer cell lines: high level expression in melanomas and up-regulation in activated T lymphocytes. Glycoconj. J., 12, 894-900.
Yogeeswaran, G. and Salk, P.L. (1981) Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science, 212, 1514-6.
Yoshikoshi, M., Yoshiki, Y., Okubo, K., Seto, J. and Sasaki, Y. (1996) Prevention of hydrogen peroxide damage by soybean saponins to mouse fibroblasts. Planta Med., 62, 252-5.
Zeng, G., Gao, L., Birkle, S. and Yu, R.K. (2000) Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res., 60, 6670-6.
Zhu, Y., Srivatana, U., Ullah, A., Gagneja, H., Berenson, C.S. and Lance, P. (2001) Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochim. Biophys. Acta., 1536, 148-60.
吳啓裕博士論文。(2000) 新型唾液酸轉移酶抑制劑及其在唾液酸生物學上的應用。
林子文博士論文。(2005)新型岩藻醣轉移酶抑制劑之作用機制及其在醣質生物學上的研究。
游佳瑜碩士論文。(2004)唾液酸轉移酶抑制劑soyasaponin I對於B16F10小鼠黑色素瘤細胞轉移能力之影響。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊