跳到主要內容

臺灣博碩士論文加值系統

(44.210.77.73) 您好!臺灣時間:2024/02/28 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王湘涵
研究生(外文):Hsiang-Han Wang
論文名稱:外差干涉技術在成對表面電漿波交互作用之量測
論文名稱(外文):Optical heterodyne interferometry on paired surface plasmon waves interaction measurement
指導教授:周晟周晟引用關係
指導教授(外文):Chien Chou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:50
中文關鍵詞:表面電漿外差干涉聲子表面電漿共振
外文關鍵詞:surface plasmaheterodynephononSPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究利用Zeeman雷射輸出的雙頻率互相平行之P線偏極化光入射至Kretschmann耦合裝置,在金屬膜界面上同時產生兩個表面電漿波,藉由量測反射光之外差干涉訊號的振幅大小,瞭解成對表面電漿波之間的交互作用。
理論上,在非共振角時,聲子提供入射光動量以激發表面電漿波,但同時也破壞了成對表面電漿波的同調性。由實驗證實,隨著p-極化光入射角度愈接近共振角,兩個表面電漿波的同調程度就愈差,此結果也顯示出具有較小動量的聲子數目較多,而動量較大的聲子數目較少,因此可以推測聲子動量分佈的機率密度函數可能與Boltzmann 分佈函數相似。
Abstract

In this study, a pair of correlated surface plasma waves (SPWs) are excited simultaneously by linear polarized P waves (TM wave) of different temporal frequencies from a Zeeman He-Ne laser in a SPR device of Kretschmann configuration. In order to study the interaction between these two correlated SPWs, an optical heterodyne interferometry is set up for measuring interfering signal of the reflected beam near resonance angle.

In theory, the degree of coherence of the paired surface plasma waves is degraded by the lattice phonons, which are able to provide the momentum to excite the surface plasma wave near resonance angle. From the experiment, the degree of coherence of paired surface plasma waves becomes decaying when the incident angle of p-polarized light waves are close to resonance angle. This result implies that the phonon density with small momentum is higher than that with large momentum. Therefore, the probability density function of phonon in gold is likely to be Boltzmann distribution.
目錄
誌謝----------------------------------------------------Ⅰ
摘要----------------------------------------------------Ⅱ
Abstract------------------------------------------------Ⅲ
目錄----------------------------------------------------Ⅳ
表目錄--------------------------------------------------Ⅵ
圖目錄--------------------------------------------------Ⅶ


第一章� 緒論-------------------------------------------1
第二章� 文獻回顧---------------------------------------4
2.1 前言-----------------------------------------------4
2.2 光的偏振-------------------------------------------5
2.2.1 偏振的概念------------------------------------5
� 2.2.2 Jones-vector representation-------------------7
2.3 同調與外差干涉-------------------------------------7
2.3.1 同調------------------------------------------8
� 2.3.2 外差干涉-------------------------------------11
2.4 表面電漿共振原理----------------------------------13
2.4.1 金屬表面電漿的形成---------------------------13
2.4.2 表面電漿激發方式-----------------------------20
2.4.3 表面電漿共振的反射率曲線---------------------25
2.4.4 本徵阻尼與輻射阻尼---------------------------27
2.5 金屬的物理特性------------------------------------29
2.5.1 聲子-----------------------------------------29
2.5.2 金屬的電阻率---------------------------------31
第三章� 實驗材料及方法--------------------------------32
3.1 實驗架構------------------------------------------32
3.2 實驗方法------------------------------------------34
第四章� 實驗結果--------------------------------------36
4.1 兩道入射光強度相同--------------------------------36
4.2 兩道入射光強度不同--------------------------------39
4.3 光強度對Visibility之影響--------------------------41
第五章� 討論------------------------------------------42
第六章� 結論------------------------------------------46

參考文獻-----------------------------------------------47
參考文獻

[1] R. W. Wood, “On a remarkable case uneven distribution of light in a diffraction grating spectrum,” Phil. Magm. 4, 396-402,1902
[2] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881, 1957
[3] C. J. Powell, J. B. Swan, “Effect of oxidation on the characteristic loss spectra of aluminum and magnesium,” Phys. Rev. 118, 640-643, 1960
[4] A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398-410, 1968
[5] E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313-324, 1971
[6] John Davies, “Surface Analytical Techniques for Probing Biomaterial Processes,” CRC, chap3
[7] Y. C. Cheng, W. K. Su, and J. H. Lion, “Application of a liquid sensor based on surface plasma wave excitation to distinguish methyl alcohol from ethyl alcohol,” Opt. Eng. 39, 311-314, 2000
[8] K. E. Peiponen, J. Raty, E. M. Vartiainen, T. Sugiura, and S. Kawata, “Optical constants of industrial liquid obtained by phase retrieval from reflectometric and surface-plasmon-resonance data,” Meas. Sci. Technol. 10, 145-148, 1999
[9] H. P. Ho, S. Y. Wu, M. Yang, and A. C. Cheung, “Application of white light-emitting diode, to surface plasmon resonance sensors,” Sensors and Actuators B 80, 89-94, 2001
[10] J. Gau, Z. Zhu, and W. Deng, “Small-angle measurement based on surface plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38, 6550-6555, 1999
[11] B. Chadwick, M. Gal, “An optical temperature sensor using surface plasmons,” Japn. J. Appl. Phys. 32, 2716-2717, 1993
[12] C. Jung, S. Yee, and K. Kuhn, “Integrated optics waveguide modulator based on surface plasmon resonance,” Journal of Lightwave Technology 12, 1802-1806, 1994
[13] X. Yu, L. Zhao, H. Jiang, H. Wang, C. Yin, and S. Zhu, “Immunosensor based on optical heterodyne phase detection,” Sensors and Actuators B 76, 199-202, 2001
[14] M. J. Jory, P. S. Vukusic, J.R. Sambles, “Development of a prototype gas sensor using surface plasmon resonance on gratings” Sensors and Actuators B 17, 1203-1209, 1994
[15] M. Weisser, B. Menges, S. M. Neher, “ Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons,” Sensors and Actuators B 56, 189-197, 1999
[16] Charles Kittel, “Introduction to Solid State Physics,” John Wiley & Sons, 1996, chap4,6,10
[17] Heinz Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer-Verlag, 1986, chap2,Appendix
[18] A. Yariv, P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, 1984, chap3
[19] W. Lauterborn, T. Kurz, “Coherent Optics,”Springer-Verlag, 1993, chap4
[20] M. Born, E. Wolf, “Principles of Optics,” Cambridge University Press, 1999, chapter 10
[21] Robert D. Guenther, “Modern Optics,” John Wiley & Sons, 1990, chap8
[22] U. Fano, J. Opt. Soc. Am. 31, 213, 1941
[23] A. Hessel, A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275-1298, 1965
[24] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661-12666, 1999
[25] J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845-2848, 1999
[26] W. -C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B 62, 11134-11138,2000
[27] Hecht, “Optics,” Addison Wesley, 2002, chap3,4
[28] Dror Sarid, “Long-range surface-plasma waves on very thin metal films,” Phy. Rev. Lett. 47, No.26, 1927-1930, 1981
[29] Cheng-Chung Lee, Yi-Jun Jen, “Influence of surface roughness on the calculation of optical constants of a metallic film by attenuated total reflection,” Appl. Opt. 38, No.28, 6029-6033, 1999
[30] 郭文娟, “Zeeman 雷射外差干涉技術在生物醫學檢測方法上之應用” 國立陽明大學放射醫學科學研究所碩士學位論文,2001
[31] Maurice J. Halmos, Joseph Shamir, “Temporal coherence of laser fields analyzed by heterodyne interferometry,” Appl. Opt. 21, No.2, 265-273, 1982
[32] Paul A. Tipler, Ralph A. Llewellyn, “Modern Physics,” Freeman, 1999, chap8
[33] H. P. Chiang, Y. C. Wang, P. T. Leung, W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the of the optical sensor based on surface plasmon resonance,” Opt. Comm. 188, 283-289, 2000
[34] H. P. Chiang, P. T. Leung, W. S. Tse, “Remarks on the substrate-temperature dependence of surface-enhanced Raman scattering,” J. Phy. Chm. B 104, No.10, 2348-2350, 2000
[35] H. P. Chiang, Y. C. Wang, P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425, 135-138, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top