( 您好!臺灣時間:2024/03/03 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Ke-Wei Chen
論文名稱(外文):Roles of PLEKHF1 in endocytosis-related processes.
指導教授(外文):Chi-Hung Lin
外文關鍵詞:endocytosisearly endosomePLEKHF1Rab5Rab7phafinlysosomeFYVE
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在實驗室之前的研究中,利用基因體研究及生物資訊的方法尋找肝癌細胞中表現量改變的基因,並且在配合visual screening下發現兩個分布於內膜體的功能未知新穎基因:PLEKHF1及PLEKHF2 (pleckstrin homology domain containing, family F (with FYVE domain) member 1/2, or PF1/2)。在細胞中大量表現PF1和PF2時可造成早期內膜體的增大;本研究主要針對PF1造成此現象的原因以及在細胞吞噬中扮演的角色。PF1與P2同屬一個新發現的蛋白家族:Phafin(protein containing both PH and FYVE domains),其成員保留在不同物種之中,目前發現至少共有十四個基因。以綠色螢光蛋白作為融合標籤發現PF1可同時分布在早期內膜體和溶酶體;PF2則無溶酶體的分布。大量表現時造成早期內膜體增大的能力需仰賴Rab5的活性,顯示PF1可能作用於Rab5上游;而PF1進入晚期內膜體/溶酶體的現象則在細胞同時表現顯性抑制型Rab7時消失,可推測PF1與Rab7的功能相關。如同其他已知的FYVE蛋白,PF1的FYVE區域即可進入帶有Rab5或運鐵蛋白的早期內膜體,同時in vitro實驗也證實PF1的確有結合PI(3)P的能力。為了進一步研究在早期內膜體的功能,觀察活體細胞攝取運鐵蛋白發現PF1在吞噬早期即有所參與,但並不影響其速率。另一方面,PF1的C端序列可能與進入溶酶體的能力相關,將其尾端三十個氨基酸融合到PF2後,分布到LysoTracker Red的能力明顯增加;但尾端序列本身卻無法有效地進入晚期內膜體/溶酶體,因此推測此尾端序列可能與其上游共同組成一蛋白結合區域,控制PF1在溶酶體的分布。綜合以上發現,本研究初步地探討了PF1在細胞吞噬過程可能扮演的角色,同時也發現其同源蛋白PF2在細胞中參與不同的功能,兩者的差異可能有部分與C端序列相關。
Based on a series of genomics analysis that targets differentially expressed genes in liver cancers, we have identified, from their distinctive endosomal localization patterns, two novel genes named PLEKHF1 (pleckstrin homology domain containing, family F (with FYVE domain) member 1, or PF1) and PLEKHF2 (PF2). Overexpression of either PF1 or PF2 resulted in the enlargement of the endosome. This study focuses on deciphering the signalling pathway underlying this intriguing phenotype of PF1. PF1 and PF2 represent two members of a new protein family called Phafins (protein containing both PH and FYVE domains), which consists of 14 genes from different species. GFP-tagged PF1 proteins were found in early endosomes and lysosomes, where they colocalized with EEA1 and LysoTracker Red, respectively, and this early endosomal localization is dependent on its FYVE domain. Increased expression of PF1 caused an enlargement of early endosome, as had been observed in cells expressing the constitutively active form of Rab5 gene. Endosomal enlargement caused by PF1 overespression was abolished by the simultaneous presence of the dominant negative Rab5, indicating that PF1 could regulate the endocytosis process in a Rab5-dependent manner. In addition, the presence of PF1 in the lysosome was reduced in cells containing the dominant negative Rab7. Transferrin uptake assay further showed that PF1 is involved in the early stages of endocytosis, but its overexpression had no effect on internalization rate. Furthermore, the C terminal sequence may comprise elements necessary for PF1 to enter lysosomal compartments. While confering PF2 the ability to enter lysosomes, the tail domain of PF1, when expressed alone, showed only minor colocalization with LysoTracker, suggesting tail domain may act in concert with upstream sequences to mediate lysosomal loclization. Taken together, our results suggested that PF1 represents a new player in Rab-mediated endocytosis precesses, as its effects on the formation of early endosomes was mediated by Rab5 signalling, whereas its continuous presence and metabolisms in the lysosome was modulated by the Rab7 signalling.We propose that PF1 may act as an adaptor functioning along the endocytic pathway through protein-lipid and possibly protein-protein interactions.
Aderem, A. & Underhill, D.M. (1999). Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623.
Anderson, R.G.W., Brown, M.S., Beisiegel, U. and Goldstein, J.L. (1982). Surface distribution and recycling of the low density lipoprotein receptor as visualized with antireceptor antibodies. J. Cell Biol. 93, 523–531.
Anderson, R.G. (1998). The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225.
Artalejo, C.R., Elhamdani, A. & Palfrey, H.C. (2002). Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc. Natl Acad. Sci. USA 99, 6358–6363.
Beattie, E.C. et al. (2000). Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neurosci. 3, 1291–1300.
Brodsky, F.M., Chen, C.-Y., Kneuhl, C., Towler, M.C. & Wakeham, D.E. (2001). Biological basket weaving: Formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568.
Bucci, C., Parton, R.G., Mather, I.H., Stunnenberg, H., Simons, K., Hoflack, B. & Zerial, M. (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728.
Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. (2000). Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480.
Carpenter, G. & Cohen, S. (1979). Epidermal growth-factor. Annu. Rev. Biochem. 48, 193–216.
Chen, W., Li, N., Chen, T., Han, Y., Li, C., Wang, Y., He, W., Zhang, L., Wan, T. & Cao, X. (2005). The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J. Biol. Chem. 280, 40985-95.
Christoforidis, S. et al. (1999). Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252.
Collins, B.M., McCoy, A.J., Kent, H.M., Evans, P.R. & Owen, D.J. (2002). Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535.
Conner, S.D. & Schmid, S.L. (2003). Regulated portals of entry into the cell. Nature 422, 37-44.
Dautry-Varsat, A., Ciechanover, A. and Lodish, H. (1982). pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 80, 2258–2262.
De Matteis, M.A. & Godi, A. (2004). PI-loting membrane traffic. Nat. Cell Biol. 6, 487–492.
Dell'Angelica, E.C., Mullins, C., Caplan, S. & Bonifacino, J.S. (2000). Lysosome-related organelles. FASEB J. 14, 1265-78.
Di Fiore, P. P. & De Camilli, P. (2001). Endocytosis and signaling: An inseparable partnership. Cell 106, 1–4.
Drab, M. et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 genedisrupted mice. Science 293, 2449–2452.
Fadok, V. A. & Chimini, G. (2001). The phagocytosis of apoptotic cells. Semin. Immunol. 13, 365–372.
Feng, Y., Press, B. & Wandinger-Ness, A. (1995). Rab7: an important regulator of late endocytic membrane traffic. J. Cell Biol. 131, 1435–1452.
Gagescu, R. et al. (2000). The recycling endosome of MDCK cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791.
Goldstein, J.L., Brown, M.S., Anderson, R.G.W., Russell, D.W. & Schneider, W.J. (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu. Rev. Cell Biol. 1, 1–39.
Gorvel, J.-P., Chavrier, P., Zerial, M. & Gruenberg, J. (1991). Rab5 controls early endosome fusion in vitro. Cell 64, 915–925.
Gruenberg, J. & Maxfield, F. (1995). Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563.
Gruenberg, J. (2001). The endocytic pathway: a mosaic of domains. Nat. Rev. Mol. Cell Biol. 2, 721–730.
Gu, F. & Gruenberg, J. Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett. 452, 61–66 (1999).
Hall, A. & Nobes, C. D. (2000). Rho GTPases:Molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil. Trans. R. Soc. Lond. B 355, 965–970.
Haucke, V. (2005). Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem. Soc. Trans. 33, 1285-9.
Heilker, R., Spiess, M. & Crottet, P. (1999) Recognition of sorting signals by clathrin adaptors. Bioessays 21, 558–567
Hoepfner, S., Severin, F., Cabezas, A., Habermann, B., Runge, A., Gillooly, D., Stenmark, H. & Zerial, M. (2005). Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450.
Horiuchi, H. et al. (1997). A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159.
Hunziker, W. & Geuze, H. J. (1996) Intracellular trafficking of lysosomal membrane proteins. Bioessays 18, 379–389
Itoh, T. & Takenawa, T. (2002). Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal. 14, 733-43.
Jordens, I., Marsman, M., Kuijl, C. & Neefjes, J. (2005). Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070-7.
Kirchhausen, T. (2000). Clathrin. Annu. Rev. Biochem. 69, 699–727.
Lamaze, C. et al. (2001). Interleukin 2 receptors and detergent- resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671.
Lemmon, M.A. & Ferguson, K.M. (2000). Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 3051, 1-18.
Lindmo, K. & Stenmark, H. (2006). Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 119, 605-14.
Marchese, A., Catherine, C., Kim, Y.-M. and Benovic, J.L. (2003). The ins and outs of G protein-coupled receptor trafficking. Trends Biochem. Sci. 28, 369–375.
Marks, M.S., Ohno, H., Kirchhausen, T. & Bonifacino, J.S. (1997). Protein sorting by tyrosine-based signals: adapting to the Ys and wherefores. Trends Cell Biol. 7, 124–128
McNew, J.A. et al. (2000). Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159.
Mellman, I. (1996) Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625
Mellman, I. & Steinman, R.M. (2001). Dendritic cells: Specialized and regulated antigen processing machines. Cell 106, 255–258.
Nielsen, E., Severin, F., Backer, J.M., Hyman, A.A. & Zerial, M. (1999). Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biol. 1, 376–382.
Nishi, T. & Forgac, M. (2002). The vacuolar (H+)-ATPases-nature’s most versatile proton pumps. Nature Rev. Mol. Cell. Biol. 3, 94–103.
Pelkmans, L., Kartenbeck, J. & Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3, 473–483.
Raiborg, C., Bache, K.G., Mehlum, A., Stang, E. & Stenmark, H. (2001). Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008-21
Raiborg, C., Bache, K.G., Gillooly, D.J., Madshus, I.H., Stang, E. & Stenmark, H. (2002) Hrs Sorts Ubiquitinated Proteins into Clathrin- Coated Microdomains of Early Endosomes. Nat. Cell Biol. 4, 394-398.
Razani, B., Woodman, S.E. & Lisanti, M.P. (2002). Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 54, 431–467.
Ren, M., Xu, G., Zeng, J., De Lemos-Chiarandini, C., Adesnik, M. & Sabatini, D.D. (1998). Hydrolysis of GTP on Rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Nat. Acad. Sci. USA 95, 6187-6192.
Ridley, A.J. (2001). Rho proteins: Linking signaling with membrane trafficking. Traffic 2, 303–310.
Robinson, M.S. & Bonifacino, J.S. (2001). Adaptor-related proteins. Curr. Opin. Cell Biol. 13, 444–453.
Seabra, M.C., Mules, E.H. & Hume, A.N. (2002). Rab GTPases, intracellular traffic and disease. Trends Mol. Med. 8, 23–30.
Simonsen, A. et al. (1998). EEA1 links phosphatidylinositol 3-kinase function to Rab5 regulation of endosome fusion. Nature 394, 494–498.
Sonnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. (2000). Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of RAB4, RAB5, and RAB11. J. Cell Biol. 149, 901–914.
Steele-Mortimer, O., Knodler, L.A. & Finlay, B.B. (2000). Poisons, ruffles and rockets: Bacterial pathogens and the host cell cytoskeleton. Traffic 1, 107–118.
Stenmark, H., Parton, R.G., Steele-Mortimer, O., Lutcke, A., Gruenberg, J. & Zerial, M. (1994). Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287-96.
Stenmark, H., Aasland, R., Toh, B.H. & D’Arrigo, A. (1996). Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271, 24048–24054.
Stenmark, H. & Aasland, R. (1999). FYVE-finger proteins —effectors of an inositol lipid. J. Cell Sci. 112, 4175–4183.
Stoorvogel, W., Oorschot, V. & Geuze, H.J. (1996). A novel class of clathrin-coated vesicles budding from endosomes. J. Cell Biol. 132, 21-33.
Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L. & Wrana, J.L. (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95,779–91.
Weber, T. et al. (1998). SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772.
Wenk, M.R. & De Camilli, P. (2004). Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl. Acad. Sci. USA. 101, 8262-9.
Yoon, H.S., Hajduk, P.J., Petros, A.M., Olejniczak, E.T., Meadows, R.P. & Fesik, S.W. (1994). Solution structure of a pleckstrin-homology domain. Nature 369:672–5.
Zerial, M. & McBride, H. (2001). Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107-17.
第一頁 上一頁 下一頁 最後一頁 top