跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/26 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃小芬
研究生(外文):Hsiao-Fen Huang
論文名稱:探討極化肝細胞中微管之排列變化
論文名稱(外文):Organization of Microtubule Arrays in Polarized Hepatic Cells
指導教授:林奇宏林奇宏引用關係
指導教授(外文):Chi-Hung Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:51
中文關鍵詞:微管極化作用肝細胞膽小管
外文關鍵詞:microtubulepolarizationhepatocytebile canaliculicytokeratin19EB3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
極化的上皮細胞藉由緊密連接將細胞膜分成頂端區及基底區,此兩區域各具有其特殊之組成,其對上皮細胞的功能非常重要。而上皮細胞中的微管,有負責將蛋白送到正確位置的功能,破壞微管將影響細胞的極性。極化的柱狀上皮細胞微管的排列不同於一般細胞,在頂端區的周圍會具有非中心粒型微管的排列,而肝細胞極化過程中,微管排列組織如何形成目前並不清楚。本文中,我們利用HepG2細胞作為研究模型,探討極化過程中微管排列之變化。從實驗結果發現微管在僅在極化晚期有聚集於膽小管(肝細胞之頂端區)周圍現象,且極化細胞之中心體亦會移動到此處,進一步利用微管正極追蹤蛋白EB3標定微管正極,證實在極化晚期,微管負端聚集在膽小管周圍,且中心體在仍具有微管組織中心的功能,透過功能性實驗,發現這樣的微管形態與膽小管之分泌功能有關。過去的研究指出細胞角質蛋白19在柱狀上皮細胞之極化及微管聚集過程扮演重要角色,我們也在系統中進行驗證,由我們的實驗結果認為細胞角質蛋白19在肝細胞之極化過程中,並無特定的影響,肝細胞的極化與微管重組,可能透過不同的機制。
The membrane of polarized epithelial cells is separated into their apical and basolateral domain by tight junction. Each of these two domains has particular components. Such division is very important for function of epithelial cells. It is known that microtubule is required for function and maintenance of epithelial polarity. Disrupting microtubule by drugs inhibits polarity formation, protein targeting and vesicle transport in polarized epithelial cells. In polarized epithelial cells, the microtubule arrays are different from the other cells. Non-centrosomal microtubule arrays appeare beneath the apical domain. The mechanism of microtubules reorganization during cell polarization process was unclear. Here we used human hepatoblastoma cell line,HepG2, as a polarized cell model to investigate reorganization of microtubule during hepatic polarization. We found that microtubule accumulated under the apical domain in the late stage of hepatic polarization and the centrosome was also localized near the apical domain. We further used EB3-GFP to identify polarity of microtubule. The result showed that minus end of microtubules located beneath the apical domain and the plus end extended toward cytoplasm in late stage of polarized cells, while early stage polarized cells showed radiate pattern. In our observation, the centrosome near apical domain had MTOC ability. Further studies shown that those apical microtubule array may be related to the secretion function of apical domain. Finally, we also examined whether cytokeratin19 plays a role in polarization and microtubules reorganization as in columnar epithelial cell. Interestingly, our results showed that cytokeratin19 was not involved in both hepatic polarization and microtubules reorganization.
中文摘要.............1
Abstract.............2
壹、前言.............4
貳、材料與方法......13
叁、實驗結果........21
肆、討論............26
伍、總結............30
陸、參考文獻........31
柒、圖表............33
捌、附圖............48
Achler, C., D. Filmer, C. Merte, and D. Drenckhahn. 1989. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J Cell Biol. 109:179-89.

Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H. Stelzer, and K. Simons. 1989. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol. 109:2817-32.

Bu, W., and L.K. Su. 2001. Regulation of microtubule assembly by human EB1 family proteins. Oncogene. 20:3185-92.

Burakov, A., E. Nadezhdina, B. Slepchenko, and V. Rodionov. 2003. Centrosome positioning in interphase cells. In J Cell Biol. Vol. 162. 963-9.

Carvalho, P., J.S. Tirnauer, and D. Pellman. 2003. Surfing on microtubule ends. Trends Cell Biol. 13:229-37.

Colombelli, J., E.G. Reynaud, J. Rietdorf, R. Pepperkok, and E.H. Stelzer. 2005. In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic. 6:1093-102.

Coulombe, P.A., and M.B. Omary. 2002. 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol. 14:110-22.

Drenckhahn, D., and R. Dermietzel. 1988. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol. 107:1037-48.

Haruna, Y., K. Saito, S. Spaulding, M.A. Nalesnik, and M.A. Gerber. 1996. Identification of bipotential progenitor cells in human liver development. Hepatology. 23:476-81.

Ihrke, G., E.B. Neufeld, T. Meads, M.R. Shanks, D. Cassio, M. Laurent, T.A. Schroer, R.E. Pagano, and A.L. Hubbard. 1993. WIF-B cells: an in vitro model for studies of hepatocyte polarity. J Cell Biol. 123:1761-75.

Keating, T.J., and G.G. Borisy. 1999. Centrosomal and non-centrosomal microtubules. Biol Cell. 91:321-9.

Larocca, M.C., M. Jin, and J.R. Goldenring. 2006. AKAP350 modulates microtubule dynamics. Eur J Cell Biol. 85:611-9.

Lazaro, C.A., E.J. Croager, C. Mitchell, J.S. Campbell, C. Yu, J. Foraker, J.A. Rhim, G.C. Yeoh, and N. Fausto. 2003. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology. 38:1095-106.

LeCluyse, E.L., J.A. Fix, K.L. Audus, and J.H. Hochman. 2000. Regeneration and maintenance of bile canalicular networks in collagen-sandwiched hepatocytes. Toxicol In Vitro. 14:117-32.

Lian, W.N., J.W. Tsai, P.M. Yu, T.W. Wu, S.C. Yang, Y.P. Chau, and C.H. Lin. 1999. Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain. Hepatology. 30:748-60.

Mellman, I., E. Yamamoto, J.A. Whitney, M. Kim, W. Hunziker, and K. Matter. 1993. Molecular sorting in polarized and non-polarized cells: common problems, common solutions. J Cell Sci Suppl. 17:1-7.

Mogensen, M.M. 1999. Microtubule release and capture in epithelial cells. Biol Cell. 91:331-41.

Musch, A. 2004. Microtubule organization and function in epithelial cells. Traffic. 5:1-9.

Nakagawa, H., K. Koyama, Y. Murata, M. Morito, T. Akiyama, and Y. Nakamura. 2000. EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue. Oncogene. 19:210-6.

Rodriguez, M.L., M. Brignoni, and P.J. Salas. 1994. A specifically apical sub-membrane intermediate filament cytoskeleton in non-brush-border epithelial cells. J Cell Sci. 107 ( Pt 11):3145-51.

Salas, P.J. 1999. Insoluble gamma-tubulin-containing structures are anchored to the apical network of intermediate filaments in polarized CACO-2 epithelial cells. J Cell Biol. 146:645-58.

Salas, P.J., M.L. Rodriguez, A.L. Viciana, D.E. Vega-Salas, and H.P. Hauri. 1997. The apical submembrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Cell Biol. 137:359-75.

Schuyler, S.C., and D. Pellman. 2001. Microtubule "plus-end-tracking proteins": The end is just the beginning. Cell. 105:421-4.

Stepanova, T., J. Slemmer, C.C. Hoogenraad, G. Lansbergen, B. Dortland, C.I. De Zeeuw, F. Grosveld, G. van Cappellen, A. Akhmanova, and N. Galjart. 2003. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci. 23:2655-64.

Strelkov, S.V., H. Herrmann, and U. Aebi. 2003. Molecular architecture of intermediate filaments. Bioessays. 25:243-51.

Wu, F., M. Nishioka, J. Fujita, M. Murota, Y. Ohtsuki, T. Ishida, and S. Kuriyama. 2002. Expression of cytokeratin 19 in human hepatocellular carcinoma cell lines. Int J Oncol. 20:31-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top