跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱家慧
研究生(外文):Chia-Hui Chu
論文名稱:慢性低劑量Deprenyl處理減輕高劑量甲基安非他命對大白鼠的神經毒性:行為及腦區GFAP與TH免疫組織化學染色的研究
論文名稱(外文):Chronic Low Dose Deprenyl Attenuate The High Dose Methamphetamine-Induced Neurotoxicity in Rat : Studies in Behavior and Brain Regional GFAP and TH Immunohistochemical Expression.
指導教授:黃銀河黃銀河引用關係
指導教授(外文):Yn-Ho Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖暨細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:54
中文關鍵詞:甲基安非它命行為改變膠質原纖維酸性蛋白酥胺酸羥化酵素
外文關鍵詞:methamphetaminedeprenylbehaviorGFAPTH
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
甲基安非他命是精神亢奮劑, 也是一種全球性濫用的毒品。高劑量甲基安非他命會造成嚴重的腦功能受損, 引起腦部多巴胺過量釋放, 導致過氧化物的大量堆積,使得神經細胞凋亡。Deprenyl 是一種不可逆的單胺氧化酶抑制劑,多項研究指出其低劑量Deprenyl可清除自由基、降低氧化性傷害,提供神經保護的作用,臨床上也用作治療帕金森氏症的輔助用藥。因此,本實驗擬以慢性低劑量Deprenyl處理(0.25 mg/kg, IP,每天一次)來檢驗其對高劑量之甲基安非他命(5 mg/kg, IP, 每二小時一次, 共四次)引發之神經細胞受損的治療效果。利用行為測試及TH 與GFAP免疫組織化學染色的方法來探討Deprenyl是否可以減緩高劑量甲基安非他命所引起的神經毒性。
實驗結果顯示:(1)在行為方面,和對照組相較之下,第一天甲基安非他命處理組的大白鼠,有活動力及刻板行為增加的表現;認知指數有顯著降低;在免疫組織染色方面:多巴胺系統的核區(包含內側前額腦區(MPC), 尾狀殻核(CPU), 下視丘弓狀核(ARC), 黑質緻密區(SNC) , 中央灰質部(CG)及 腹側被蓋區(VTA)等區),TH的表現量明顯下降及GFAP表現量明顯上升,顯示甲基安非他命所引起的毒性;(2) 慢性Deprenyl處理後,顯著改善了甲基安非他命引起的認知指數降低;在免疫組織染色方面也有明顯減緩甲基安非他命所引起的病兆。由此初步結果可知,慢性處理低劑量Deprenyl可減緩甲基安非他命所引起的神經毒性, 推測過氧化自由基的形成在甲基安非他命的神經毒性中扮演重要角色。
Methamphetamine (MAP) is an illicit drug of psychostimulant and has been abused worldwide. High dose MAP can cause severe neurotoxic effects involving the overloading of dopamine, oxidative free radicals, and apoptosis. Deprenyl, an irreversible inhibitor of monoamine oxidase B, has been used clinically to treat adjunctively the Parkinson’s disease and Alzheimer’s disease because of its neuroprotective effect. This effect can only accomplished at its low anti-apoptotic dose. However, the neuroprotective mechanism of deprenyl is still unclear. In this study, we used low dose chronic deprenyl ( 0.25 mg/kg/day, IP )to study if deprenyl can reduce the high dose MAP ( 5mg/kg,IP, given 4 times consecutively in a day at 2 hr interval ) neurotoxicity in rats. The behavior (locomotion, recognition index) rating and brain regional GFAP and TH immunohistochemical expression were used to evaluate the results. The results showed that MAP reduce significantly the recognition index of objects in rat and the deprenyl treat recover the deficit. MAP reduced significantly the TH expression in regions of dopamine circuits, such as MPC, CPU, ARC, SNC, CG, and VTA, while deprenyl recovered it. In addition, Map increased significantly the GFAP expression in regions of dopamine circuits aforementioned, while deprenyl recovered it. In conclusion, we suggest that low dose chronic deprenyl can effectively attenuate the deficits caused by the MAP-induced neurotoxicity.
英文摘要
中文摘要
名詞縮寫
序言
一、 中神經興奮劑--甲基安非他命………………………1
二、 Deprenyl………………………………………………4
三、 膠質原纖維酸性蛋白---GFAP……………………….6
四、 酥胺酸羥化酵素---TH………………………………..7
研究目的……………………………………………………..8
材料與方法
一、 實驗動物…………………………………………….9
二、 實驗藥品…………………………………………….9
三、 實驗設計及流程…………………………………….9
四、 資料分析……………………………………………13
結果
一、 前處理行為測試結果………………………………16
二、 認知記憶測試結果…………………………………17
三、 免疫組織化學染色結果……………………………18
討論…………………………………………………………..23
圖表……………………………………………………………………29
參考文獻………………………………………………………………49
Barrett JS, Szego P, Rohatagi S, Morales RJ, De Witt KE, Rajewski G, Ireland J. Absorption and presystemic metabolism of selegiline hydrochloride at different regions in the gastrointestinal tract in healthy males. Pharm Res. 1996 ;13:1535-40.

Birkmayer W, Knoll J, Riederer P, Youdim MB, Hars V, Marton J. Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson's disease: a longterm study J Neural Transm. 1985;64:113-27

Birkmayer W, Riederer P, Ambrozi L, Youdim MB. Implications of combined treatment with 'Madopar' and L-deprenil in Parkinson's disease. A long-term study. Lancet. 1977 ;1:439-43.

Brecht ML, O'Brien A, von Mayrhauser C, Anglin MD. Methamphetamine use behaviors and gender differences.Addict Behav. 2004 ;29:89-106.

Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int. 1998 ;32:117-31. Review

Carrillo MC, Kitani K, Kanai S, Sato Y, Ivy GO, Miyasaka K. Long term treatment with (-)deprenyl reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci. 1996;59:1047-57.

Chapman DE, Hanson GR, Kesner RP, Keefe KA. Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. Pharmacol Exp Ther 2001;296:520–7.

Chiueh CC, Huang SJ, Murphy DL Suppression of hydroxyl radical formation by MAO inhibitors: a novel possible neuroprotective mechanism in dopaminergic neurotoxicity J Neural Transm Suppl. 1994;41:189-96
Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev. 2001 ;36:1-22

Deakin JFW, Dostrovsky JA. Involvement of the periaqueductal
grey matter and spinal 5-hydroxytryptaminergic pathways in morphine
analgesia: effects of lesions and 5-hydroxytryptamine depletion.
Br J Pharmacol.1978; 63:159–165.

de Lima MN, Laranja DC, Caldana F, Bromberg E, Roesler R, Schroder N. Reversal of age-related deficits in object recognition memory in rats with l-deprenyl. Exp Gerontol. 2005 ;40:506-11.

Freisleben HJ, Lehr F, Fuchs J. Lifespan of immunosuppressed NMRI-mice is increased by deprenyl. J Neural Transm Suppl. 1994; 41:231-6

Frey K, Kilbourn M, Robinson T. Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol. 1997 ;334:273-9

Friedman SD, Castaneda E, Hodge GK. Long-term monoamine depletion, differential recovery, and subtle behavioral impairment following methamphetamine-induced neurotoxicity. Pharmacol Biochem Behav 1998; 61:35–44.

Fukumura M, Cappon GD, Pu C, Broening HW, Vorhees CV. A
single dose of methamphetamine-induced neurotoxicity in rats: effects
on neostriatal monoamines and glial fibrillary acidic protein.
Brain Res.1998; 806:1–7.

Gallagher IM, Clow A, Glover V. Long-term administration of (-)-deprenyl increases mortality in male Wistar rats. J Neural Transm Suppl. 1998;52:315-20

Gentry WB, Ghafoor AU, Wessinger WD, Laurenzana EM, Hendrickson HP, Owens SM. (+)-Methamphetamine-induced spontaneous behavior in rats depends on route of (+)METH administration. Pharmacol Biochem Behav. 2004 ;79:751-60.

Gibb JW, Kogan FJ. Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn Schmiedebergs Arch Pharmacol. 1979 ;310:185-7

Guilarte TR, Nihei MK, McGlothan JL, Howard AS. Methamphetamine-induced deficits of brain monoaminergic neuronal markers: distal axotomy or neuronal plasticity. Neuroscience. 2003;122:499-513.

Heinonen EH, Myllyla V, Sotaniemi K, Lamintausta R, Salonen JS, Anttila M, Savijarvi M, Kotila M, Rinne UK. Pharmacokinetics and metabolism of selegiline. Acta Neurol Scand Suppl. 1989;126:93-9.

Huang YH, Yu CM, Chen CT. Evidence that deprenyl reverse methamphetamine-induced reduction of the local cerebral glucose utilization of the orbitofrontal cortex in rats. Submitted in 2006

Iwazaki T, McGregor IS, Matsumoto I. Protein expression profile in the striatum of acute methamphetamine-treated rats. Brain Res. 2006;1097:19-25.

Jayanthi S,Deng X, Noailles PA, Ladenheim B, Cadet JL. Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 2004 ;18:238-51.

Kitani K, Kanai S, Sato Y, Ohta M, Ivy GO, Carrillo MC. Chronic treatment of (-)deprenyl prolongs the life span of male Fischer 344 rats. Further evidence. Life Sci. 1993;52:281-8.

Knoll J. The striatal dopamine dependency of life span in male rats. Longevity study with (-)deprenyl. Mech Ageing Dev. 1988 ;46:237-62

Knoll J, Miklya I. Multiple, small dose administration of (-)deprenyl enhances catecholaminergic activity and diminishes serotoninergic activity in the brain and these effects are unrelated to MAO-B inhibition.
Arch Int Pharmacodyn Ther. 1994 ;328:1-15.

Kogan FJ, Nichols WK, Gibb JW. Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels Eur J Pharmacol. 1976 ;36:363-71

LaVoie MJ,Card JP,Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol. 2004 ;187:47-57

Lovick TA. Influence of the dorsal and median raphe nuclei on
neurons in the periaqueductal gray matter: role of 5-hydroxytryptamine.
Neuroscience,1994; 59:993–1000.

Lucot JB, Wagner GC, Schuster CR, Seiden LS. The effects of dopaminergic agents on the locomotor activity of rats after high doses of methylamphetamine. Pharmacol Biochem Behav. 1980 ;13:409-13.

Magyar K, Lengyel J, Szatmari I, Gaal J. The distribution of orally administered (-)-deprenyl-propynyl-14C and (-)-deprenyl-phenyl-3H in rat brain Prog Brain Res. 1995;106:143-53.

Magyar K, Palfi M, Tabi T, Kalasz H, Szende B, Szoko E. Pharmacological aspects of (-)-deprenyl. Curr Med Chem. 2004 ;11:2017-31. Review

Magyar K, Szende B. (-)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 2004 ;25:233-42. Review

Magyar K, Vizi ES, Ecseri Z, Knoll J. Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methyl-propinylamine (E-250). Acta Physiol Acad Sci Hung. 1967;32:377-87

Miczek KA, Nikulina E, Kream RM, Carter G, Espejo EF. Behavioral
sensitization to cocaine after a brief social defeat stress:
c-fos expression in the PAG. Psychopharmacology,1999, 141:225–234.
Milgram NW, Racine RJ, Nellis P, Mendonca A, Ivy GO. Maintenance on L-deprenyl prolongs life in aged male rats Life Sci. 1990;47:415-20

Mood I, Marinac JS, Willsie S, Mason WD. Pharmacokinetics and relative bioavailability of selegiline in healthy volunteers Biopharm Drug Dispos. 1995 ;16:535-45

Ourednik J,Ourednik V,Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002 ;20:1103-10.

Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 1982 ;235:93-103

Samanin R, Garattini S. Neurochemical mechanism of action of anorectic drugs. Pharmacol Toxicol. 1993 ;73:63-8.

Schroder N, O'Dell SJ, Marshall JF. Neurotoxic methamphetamine regimen severely impairs recognition memory in rats. Synapse. 2003 ;49:89-96.

Segal, D.S., Kuczenski, R. Behavioral pharmacology of
amphetamine. In: Cho, A.K., Segal, D.S. (Eds.), Amphetamine
and its analogs: psychopharmacology, toxicology and abuse. 1994. Academic, San Diego, pp. 115–150.

Shoulson I, Oakes D, Fahn S, Lang A, Langston JW, LeWitt P, Olanow CW, Penney JB, Tanner C, Kieburtz K, Rudolph A; Parkinson Study Group. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson's disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol. 2002 ;51:604-12

Shinba T, Yamamoto K, Cao GM, Mugishima G, Andow Y, Hoshino T. Effects of acute methamphetamine administration on spacing in paired rats: investigation with an automated video-analysis method. Prog Neuropsychopharmacol Biol Psychiatry. 1996 ;20:1037-49.

Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C, Kurachi M. Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett. 2004 ;364:124-9.

Suzuki T, Fukuoka Y, Mori T, Miyatake M, Narita M. Behavioral sensitization to the discriminative stimulus effects of methamphetamine in rats. Eur J Pharmacol. 2004 ;498:157-61.

Tanaka M, Nagashima K, McAllen RM, Kanosue K. Role of the
medullary raphe in thermoregulatory vasomotor control in rats.
J Physiol.2002; 540:657–664.

Tatton WG, Greenwood CE. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism J Neurosci Res. 1991 ;30:666-72.

Wagner GC, Seiden LS, Schuster CR. Methamphetamine-induced changes in brain catecholamines in rats and guinea pigs.
Drug Alcohol Depend. 1979 ;4:435-8.

Widdowson PS, Griffiths EC, Slater P. Body temperature effects
of opioids administered into the periaqueductal grey area of rat
brain. Reg Peptides.1983; 7:259–267.

Wu RM, Chiueh CC, Pert A, Murphy DL. Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol. 1993 ;243:241-7.

Yasar S, Gaal J, Panlilio LV, Justinova Z, Molnar SV, Redhi GH, Schindler CW. A comparison of drug-seeking behavior maintained by D-amphetamine, L-deprenyl (selegiline), and D-deprenyl under a second-order schedule in squirrel monkeys. Psychopharmacology (Berl). 2006 ;183:413-21

Yen TT, Knoll J. Extension of lifespan in mice treated with Dinh lang (Policias fruticosum L.) and (-)deprenyl. Acta Physiol Hung. 1992;79:119-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top