跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐英珊
研究生(外文):Ying-Shan Hsu
論文名稱:阿拉伯芥硝酸鹽轉運蛋白AtNRT1:4及AtNRT1:5逆境下表現及功能性分析
論文名稱(外文):Characterization of two nitrate transporters, AtNRT1:4 and AtNRT1:5, under stresses
指導教授:蔡宜芳蔡宜芳引用關係
指導教授(外文):Yi-Fang Tsay
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:遺傳學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:48
中文關鍵詞:阿拉伯芥硝酸鹽轉運蛋白逆境
外文關鍵詞:Arabidopsisnitratetransporterstress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硝酸鹽是土壤中最主要的氮源,而植物仰賴硝酸鹽轉運蛋白來吸收及運輸硝酸鹽。在已研究的硝酸鹽轉運蛋白中,本實驗室利用反轉錄聚合酶連鎖反應初步確定 AtNRT1:4及AtNRT1:5基因表現會受到逆境所影響,顯示硝酸鹽轉運蛋白可能也參與植物在逆境下的適應。過去的研究指出,AtNRT1:4主要表現於葉柄,並負責液胞中硝酸鹽的儲存。AtNRT1:5則表現於根部維管束內緊臨木質部的周鞘細胞,扮演根部硝酸鹽裝載入木質部的功能。在本研究中確認在滲透壓逆境、高鹽及離層酸處理下,AtNRT1:4在根部會被誘導表現,而AtNRT1:5表現量會降低,由它們的功能推測這樣的改變可能會促使植物將硝酸鹽累積於根部。分析離層酸處理下植物根部及地上部硝酸鹽含量,發現野生型植株在四小時至六小時處理後,根部硝酸鹽的累積量的確會提高,而atnrt1:4須延遲至八小時才能達到接近的比例,顯示逆境下AtNRT1:4在根部的誘導表現有助於植物根部硝酸鹽的累積。另一方面,離層酸處理後的野生型植株其硝酸鹽分布比例與atnrt1:5相似,說明AtNRT1:5根部的表現量降低能促使植物提高根內硝酸鹽的累積。為證實根部硝酸鹽累積有助於植物在逆境下的適應,比較突變株與野生型在離層酸處理下生長的鮮重,發現在正常硝酸銨鹽培養基中並沒有預期的結果;而在硝酸銨鹽減半的培養基中,相較野生型而言atnrt1:4對離層酸有較高的敏感性,atnrt1:5對離層酸敏感性較低。因此植物在逆境下可藉由硝酸鹽轉運蛋白基因表現量的改變,促使根部硝酸鹽累積量提高,而增進植物對逆境的耐受性。
Nitrate transporters are required for plant nitrate uptake and transport. Among the identified nitrate transporter genes, AtNRT1:4 & AtNRT1:5 are regulated by abiotic stresses in our lab preliminary data, implying that nitrate transporters may also involved in stress adaptation. We confirmed the expression pattern of AtNRT1:4 & AtNRT1:5 under osmotic stress, salts, and ABA treatment, demonstrating that AtNRT1:4 is upregulated in roots, while AtNRT1:5 is downregulated in roots. Previous data have concluded that AtNRT1:4 plays a role in vacuole storage, increasing expression in the root may keep more nitrate in the root. On the other hand, AtNRT1:5 is responsible for loading nitrate into xylem, downregulated in roots may limit nitrate transport from roots to shoots. In 6h ABA treatment, atnrt1:4 fails to raise nitrate content in roots as wildtype, suggesting that AtNRT1:4 is required for nitrate accumulation in roots. In the opposite side, wildtype displays similar nitrate partition pattern as atnrt1:5 in 4h~ 6h ABA treatment, suggesting that AtNRT1:5 downregulation in roots promotes nitrate accumulation. To prove that nitrate accumulation in roots is essential for stress adaptation, we compare both mutants and wildtype under normal condition and ABA treatment. Shifting plants to ABA medium with full concentration of ammonium nitrate, no significant phenotypes are observed. When the concentration of ammonium nitrate decreases to one half, fresh weight of atnrt1:4 is lower than wildtype, and that of atnrt1:5 is similar to wildtype. Changing expression pattern of these two genes and therefore enhancing nitrate accumulation in roots may help plants to adapt or tolerate stress conditions.
縮寫表----------------------------------------------------1
中文摘要--------------------------------------------------2
英文摘要--------------------------------------------------3
前言------------------------------------------------------4
材料方法-------------------------------------------------10
結果-----------------------------------------------------18
討論-----------------------------------------------------23
圖表-----------------------------------------------------27
附圖-----------------------------------------------------41
參考文獻-------------------------------------------------42
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Science 408: 796–815.

Boyer, J.S. (1982) Plant productivity and environment. Science, 218: 443-448.
Busk, P.K., and Pages, M. (1998) Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425–435

Bray E. (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annals of Botany 89, 803–811.

Chiu, C. C., Lin, C. S., Hsia, A. P., Su, R. C., Lin, H. L. & Tsay, Y. F. (2004) Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol. 45, 1139–1148.

Cramer, G.R., Lauchli A., and Polito V.S. (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant physiol. 79:207-211.

Crawford, N.M. (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7, 859-868

Doddema, H., Hofstra, J. and Feenstra, W. (1978) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate Ⅰ. Effect of nitrogen source during growth on nitrate and chlorate. Physiol. Plant., 43: 343- 350

Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K. and Yamaguchi- Shinozaki, K. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA-signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.

Glass, A.D.M., J.E.Shaff, and Kochian; L.V. (1992) Studies of the uptake of nitrate in barley. Plant Physiol. 99, 456-463
Iglesias D.J. , Levy Y., Gómez-Cadenas A., Tadeo F.R. , Primo-Millo E. and Talon M. (2004) Nitrate improves growth in salt-stressed citrus seedlings through effects on photosynthetic activity and chloride accumulation. Tree Physiology, 24:1027–1034

King, B.J., Siddipi, M.Y., and Glass; A.D.M. (1992) Estimation of root cytoplasmic nitrate concentration using nitrate reductase activity-implications for nitrate influx. Plant Physiol. 99, 1589

Marquez, AJ; Betti, M; Garcia-Calderon, M; Pal'ove-Balang, P; Diaz, P; Monza, J. (2005) Nitrate assimilation in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY. 56(417):1741-1749.

Marschner, H. (1995) Mineral nutrition of higher plants. (London;San Diego;Academic Press)

McClure, P.R., Kochian L.V., Spanswick R.M, and Shaff, T.E. (1990) Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on membrane potential. Plant Physiol. 93, 281-289

McIntyre GI. (1997) The role of nitrate in the osmotic and nutritional control of plant development. Australian Journal of Plant Physiology 24, 103–118.

Moya, J.L., A. Gómez-Cadenas, E. Primo-Millo and M. Talon. (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J. Exp. Bot. 54:825–833.

Popova, O.V., Dietz K. J., Golldack D. (2003) Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Molecular Biology 52:569-578.

Taiz L. and Zeiger E. (2002) Plant physiology. Sinauer associates, Inc., publishers. 3rd edition.

Ullrich, W.R., and Novacky, A. (1981) Nitrate-dependent membrane potential changes and their induction in Lemna gibba G1. Plant Sci. Lett. 22, 221-217

Williams, L.E. and Miller A.J. (2001) Transporters responsible for the uptake and paritioning of nitrogenous solutes. Annu. Rev. Plant. Mol. Biol. 52, 659-688

Zhen, R.G., Koyro, H.W., Tomos, R.A., and Miller A.J. (1991) Compartmental nitrate concentractions in barley root cells measured with nitrate-selective microelectrode and by single-cell sap sampling. Planta 185, 356-361

Zhu JK. (2002) Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247–273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top