跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 22:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張雅嵐
研究生(外文):Yea-Lan Chang
論文名稱:以蛋白質工程學合成專屬抑制轉譯作用之蛋白質藥物PTD-α-sarcin
論文名稱(外文):Engineering a potential protein drug, PTD-α-sarcin that inhibits translation
指導教授:林茂榮林茂榮引用關係
指導教授(外文):Alan Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:遺傳學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:核醣毒素
外文關鍵詞:PTD-α-sarcin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
α-sarcin 已知是由一種名為Aspergillus giganteus絲狀真菌所分泌的核醣毒素,當核醣體作為受質時,α-sarcin會水解大次單元體,作用在鄰近28S rRNA 胺基端的一個磷酸雙脂鍵,並產生一含493個核苷酸的RNA片段,進而造成蛋白質生合成受抑制。為了設計一個能進入細胞、毒殺細胞並自行分解的潛力藥物,我們利用蛋白質工程學的方式將α-sarcin與tat多肽鏈鍵結在一起。tat多肽鏈來自HIV病毒的tat蛋白質,是一種蛋白質傳送區域(protein transduction domain, PTD)具有將與之鍵結的蛋白質帶入細胞之能力。我們希望藉由tat多肽鏈之特性將α-sarcin帶入細胞並執行毒殺細胞之功用。首先,利用幾個分析實驗來檢定PTD-α-sarcin的特性。實驗結果顯示PTD-α-sarcin 帶有較低水解核醣核酸之活性,不會特異地切在一個磷酸雙脂鍵但會水解大次單元體,並且進入細胞效率低。由於以上結果,我們在PTD與α-sarcin間加入GGGS胺基酸序列,改良PTD-α-sarcin為PTD-gggs-α-sarcin。而PTD-gggs-α-sarcin能夠特異性地水解核醣體並較PTD-α-sarcin更有效率地抑制蛋白質的生合成。同時,在共軛焦顯微鏡下觀察發現PTD-gggs-α-sarcin能夠進入到細胞內。
Previously, our laboratory has investigated in the action mode of α-sarcin. α-sarcin is a ribotoxin secreted by filamentous mold, Aspergillus giganteus. When ribosomes are the substrate, α-sarcin cleaves a single phosphodiester bond at a universally conserved sarcin domain of 28S rRNA, then inactivates ribosome and inhibits protein synthesis. In general, α-sarcin is incapable of entering cell which has greatly limited the potential usage of α-sarcin for medical purpose. In this study, we attempted to design a self destructive potential drug which has the ability of penetrating cell membrane and killing cell, protein transduction domain (PTD), tat peptide, is employed in this study. Tat-conjugated proteins can enter cells via lipid-raft dependent endocytosis, so we engineered a PTD-α-sarcin and characterize with functional assays. First, we have constructed a PTD-α-sarcin that put the tat peptide at the N-terminal of α-sarcin, and characterized its activity. We have found that the engineered PTD-α-sarcin carries low RNase activity, hydrolyzes ribosome nonspecifically, and enters cells with low efficiency. To improve these deficiencies, linker composed of GGGS is added between PTD and α-sarcin to make PTD-gggs-α-sarcin. The new construct hydrolyzes ribosome specifically, and inhibits protein synthesis more efficiently in vitro. By confocol microscopy, it also found that PTD-gggs-α-sarcin is capable of cell entry. Our data suggests that activity of PTD-gggs-α-sarcin is better than PTD-α-sarcin.
Abstract………………………………………………………………I
Abstract (Chines)…………………………………………………II
Introduction ……… ………………………………………………1
Materials and methods ……………………………………………5
Polymerase chain reaction………………………………………5
RNA impregnated gel………………………………………………6
Expression and purification of protein ……………………8
Expression and purification of 35S-labeled protein……14
Rabbit reticulocyte lysate cutting assay…………………16
In vitro translation……………………………………………17
Cell culture………………………………………………………18
Cell entry assay…………………………………………………19
Caspase-3 activity assay………………………………………19
In vivo translation……………… ……………………………20
Result ……………………………… ……………………………22
Discussion ……………………………… ………………………29
Reference …………………………………………………………34
Figure ………………………………………………………………41
Appendix ……………………………………………………………55
1. Green, M., and Loewenstein, P. M. (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus TAT trans-activator protein. Cell 55: 1179-1188.
2. Frankel, A. D., and Pabo, C. O. (1988) Cellular uptake of the TAT protein from human immunodeficiency virus. Cell 55: 1189-1193.
3. Vogel, B. E., Lee, S. J., Hildebrand, A., Craig, W., Pierschbacher, M. D., Wong-Staal, F., and Ruoslahti, E. (1993) A novel integrin specificity exemplified by binding of the α vs β5 integrin to the basic domain of the HIV TAT protein and vitronectin. J. Cell Biol. 121: 461-468.
4. Wender, P. A., Mitchell, D. J., Pattabiraman, K., Pelkey, E. T., Steinman, L., and Rothbard, J. B. (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. 97: 13003-13008.
5. Hirofumi, N., and Shinnichi M. (2006) Protrein transduction technology: a novel therapeutic perspective. Prot. Trans. Tech. 60: 1-11
6. Nagahara, H., Vocero-Akbani, A., Snyder, E., Ho, A., Latham, D., Lissy, N., Becker-Hapak, M., Ezhevsky, S., and Dowdy, S. (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nature Med. 4: 1449-1152
7. Ezhevsky, S. A., Nagahara, H., Vocero-Akbani, A. M., Gius, D. R., Wei, M. C., and Steven F. Dowdy. (1997) Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D:Cdk4/6 complexes results in active pRb Proc. Natl.
35
Acad. Sci. U.S.A. 94: 10699
8. Lissy, N. A., Van Dyk, L. F. , Becker-Hapak, M., Vocero-Akbani, A. Mendler, J. H., and Dowdy S. F. (1998) TCR antigen–induced cell death occurs from a late G1 phase cell cycle check point. Immunity 8: 57-65
9. Gius, D.R. , Ezhevsky, S. A., Becker-Hapak, M., Nagahara, H., Wei, M. C., and Dowdy,S. F. (1999) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of cdk2 complexes in late G1. Cancer Res. 59: 2577-2580
10. Schwarze, R. S., Ho, A., and Dowdy, S.F. (1999) In vivo protein transduction: delivery of a biologically active protein into mouse. Nature 285: 1569-1572
11. Wadia, J. S., Stan, R. V. and Dowdy, S. F. (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid-raft macropinocytosis. Nature Med. 10: 310-316
12. Jennings, J. C., Roga, V., Junek, A. J., Schuurmans, D. M., and Olson, B. H. (1965) Alpha sarcin, a new antitumor agent II. fermentation and antitumor spectrum. Appl Microbiol.13: 322-326.
13. Sacco, G., Drickamer, K and Wool, I.G. (1983) The primary structure of the cytotoxin α-sarcin. J. Boil. Chem. 258: 5811-5818
14. Endo, Y., and Wool, I.G. (1982) The site of action of α-sarcin in eukaryotic ribosomes. J. Biol. Chem. 257: 9054-9060
36
15. Chan,Y.L, Olvera, J., and Wool, I.G. (1983) The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of ribonucleotides in a gene. Nucl. Acids. Res. 11: 7819-7831
16. Chan, Y.L., Endo, Y., and Wool, I.G. (1983) The sequence of the nucleotides at the α-sarcin cleavage site in rat 28S ribosomal ribonucleic acid. J. Biol. Chem. 258: 12768-12770
17. Wool, I.G. (1984) The mechanism of action of the cytotoxic nuclease α-Sarcin and its use to analyze ribosome structure. Trends. Biochem. Sci. 9: 14-17
18. Endo Y., Huber P.W., and Wool I.G. (1983) The ribonucleas activity of the cytotoxin α-sarcin. J. Biol. Chem. 258: 2662-2667
19. Mark R. Macbeth and Ira G. Wool (1991) Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors. J. Mol. Biol. 285: 567-580
20. Fernandez-Puentes, C., and Vazquez, D. (1977) Effects of some proteins that inactivate the eukaryotic ribosome. FEBS Lett. 78: 143-146.
21. Montanaro, L., Sperti, S., Mattioli, A., Testoni, G., and Stirpe, F. (1975) Inbibition by ricin of protein synthesis in vitro. Biochem. J. 146: 127-131.
22. Hausner, T. P., Atmadja, J., and Nierhaus, K. H. (1987). Evidence that the G2661 region of 23 S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 69: 911-923.
23. Conde, F. P., Orlandi, R., Canevari, S., Mezzanzanica, D., Ripamonti, M.,
37
Munoz, S. M., Jorge, P., and Colnaghi, M. I. (1989). The Aspergillus toxin restriction is a suitable cytotoxic agent for generation of immunoconjugates with monoclonal antibodies directed against human carcinoma cells. Eur. J. Biochem. 178: 795–802.
24. Susanna, M. R., and Dianne, L. N. (1999) Natural and engineered cytotoxic ribonucleases: therapeutic potential. Exp. Cell. Res. 253: 325–335
25. Williams, J.M., Lea, N., Lord, J.M., Roberts, L.M., Milford, D., and Taylor, C.M. (1997) Comparison of ribosome-inactivating proteins in the induction of apoptosis. Toxicol. Lett. 91: 121-127.
26. Deptala, A., Halicka, H. D., Ardelt, B., Ardelt, W., Mikulski, S.M., Shogen, K., and Darzynkiewicz, Z. (1998) Potentiation of tumor necrosis factor induced apoptosis by onconase. Int. J. Oncol. 13: 11-16.
27. Keppler-Hafkemeyer, A., Brinkmann, U., and Pastan, I. (1998) Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry. 37: 16934-16942.
28. Komatsu, N., Oda, T., and Muramatsu, T. (1998) Involvement of both caspase-like proteases and serine proteases in apoptotic cell death induced by ricin, modeccin, diphtheria toxin, and Pseudomonas toxin. J. Biochem. 124: 1038-1044.
29. Mikulski, S.M., Viera, A., Deptala, A., and Darzynkiewicz, Z. (1998) Enhanced in vitro cytotoxicity and cytostasis of the combination of onconase with a proteasome inhibitor. Int. J. Oncol. 13: 633-644.
30. Piccoli, R., Di Gaetano, S., De Lorenzo, C., Grauso, M., Monaco, C.,
38
Spalletti-Cernia, D., Laccetti, P., Cinaatl, J., Matousek, J., and D'Alessio, G. (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc. Natl. Acad. Sci. 96: 7768-7773.
31. Smith, M.R., Newton, C.L., Mikulski, S.M., and Rybak, S.M. (1999) Cell cycle-related differences in susceptibility of HIH/3T3 cells toribonucleases. Exp. Cell Res. 247: 220-232.
32. Olmo, N., Turnay J., Buitrago, G. G., Silanes, I. L., Gavilanes, J. G., and Lizarbe, M. A. (2001) Cytotoxic mechanism of the ribotoxin α-sarcin : Induction of cell death via apoptosis. Eur. J. Biochem. 268: 2113-2123
33. Lacadena, J., MartoAnez del Pozo, A., MartoAnez-Ruiz, A., PeArez-CanA adillas, J. M., Bruix, M., ManchenA o, J. M., OnA aderra, M., and Gavilanes, J. G. (1999). Role of histidine-50, glutamic acid-96 and histidine-137 in the ribonucleolytic mechanism of the ribotoxin a-sarcin. Proteins: Struct. Funct. Genet. 37: 474-484.
34. JoseA Manuel PeArez-CanA adillas, Jorge Santoro1 RamoAn Campos-Olivas, Javier Lacadena, Alvaro MartoAnez del Pozo Jose G. Gavilanes, Manuel Rico, and Marta Bruix (2000) The highly refined solution structure of the cytotoxic ribonuclease α-sarcin reveals the structural requirements for substrate recognition and ribonucleolytic activity. J. Mol. Biol. 299: 1061-1073
35. Hwua, L., Huang, K. C., Chen D. T., and Lin A. (2000) The action mode of the ribosome-inactivating protein α-sarcin. J. Biomed. Sci. 7: 420–428
36. Salvesen, G.S. (1999) Programmed cell death and the caspases. APMIS. 107: 73-79
39
37. Keppler-Hafkemeyer, A., Brinkmann, U., and Pastan, I. (1998) Role of caspases in immunotoxin-induced apoptosis of cancer cells. Biochemistry. 37: 16934-16942
38. Morimoto, H., and Bonavida, B. (1992) Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. J. Immunol. 149: 2089-2094
39. Cao, G., Pei, W., Ge, H., Liang, Q., Luo, Y., Sharp F. R., Lu, A., Ran, R., Graham, S. H, and Chen, J. (2002) In vivo delivery of a Bcl-xl fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci. 22: 5423–5431
40. Jacobson, G.M., Dourron H. M., Liu J., Carretero O. A., Reddy D. J., Andrzejewski T., and Pagano P. J. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ. Res. 92: 637-643
41. Jo, D., Nashabi, A., Doxsee, C., Lin, Q., Unutmaz, D., Chen, J., and Ruley, HE. (2001) Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat. Biotechnol. 19: 929–933
42. Fittipaldi, A., Ferrari, A., Zoppe, M., Arcangeli, C., Pellegrini, V., Beltram, F., and Giacca, M. (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 TAT fusion proteins. J. Biol. Chem. 278: 34141-34149
43. Kelemen, B. R., Hsiao, K., and Goueli, S. A. (2002) Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J. Biol. Chem. 277: 8741-8748
44. Stein, S., Weiss, A., Adermann, K., Lazarovici, P., Hochman, J., and
40
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top