(34.204.185.54) 您好!臺灣時間:2021/04/16 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭宏良
研究生(外文):Hung-Liang Hsiao
論文名稱:胸腺素β4基因啟動子活性分析及該基因大量表現對大腸癌細胞凋亡之影響
論文名稱(外文):Analyzing the Promoter Activity of Thymosin β4 Gene and the Effect of Overexpressing Thymosin β4 on Apoptosis of SW480 Colon Cancer Cells
指導教授:蘇瑀蘇瑀引用關係李德章李德章引用關係
指導教授(外文):Yeu SuTe-Chang Lee
學位類別:博士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:79
中文關鍵詞:胸腺素β4基因表現大腸癌
外文關鍵詞:thymosin β4gene expressioncolon cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
胸腺素 β4 (Thymosin β4, Tβ4) 最初由小牛胸腺分離出來的小分子蛋白質,其可藉由與單分子肌動蛋白 (G-actin) 結合來調節微纖維絲 (microfilament) 的聚合,而影響到細胞的移動與分裂。由於Tβ4在多種癌細胞中被發現有大量表現的現象,因此其被與癌症的發生有關。然而 Tβ4 基因的轉錄調控與致癌機制目前並不清楚。
本研究室先前的研究指出,小鼠胸腺素 β4 (mTβ4) 基因-278 到 +410的片段,能有效啟動報告基因在小鼠纖維母細胞(NIH3T3)中表現。 本研究則發現mTβ4基因的第一個表現子 (exon) 長度為56 bp,其轉錄起始點與大鼠及人類相似,轉錄起始點上游具有類似TATA box的區域,下游則有兩個啟動子下游元件 (downstream promoter element, DPE)。小鼠胸腺素 β4基因 -57到 +56 片段具有啟動子的活性, -118到 +56的活性是SV40啟動子的 8倍, -168到-119之間有核蛋白結合的抑制子 (silencer) 存在, -118到-89之間有促進子 (enhancer) 存在。小鼠胸腺素 β4基因啟動子在人類子宮頸癌(HeLa)與大腸癌(SW480)細胞也有相似的活性。
本研究室最近的研究顯示, 在Tβ4 大量表現的SW480大腸癌細胞中,Fas 的表現下降,其對 CH-11 (anti-Fas IgM) 的細胞毒性敏感度也較低。 本研究中想了解其他的細胞毒殺物質,在Tβ4 大量表現的大腸癌細胞中,引發凋亡 (apoptosis) 的機轉。 Tβ4 大量表現也能增加大腸癌細胞對表現 FasL之Jurkat T 淋巴癌細胞毒殺的抵抗力。進一步的研究顯示出,以基質金屬蛋白酶 (matrix metalloproteinases, MMPs) 抑制劑 GM6001處理細胞可以回復 Fas 的表現量,及增加對 CH-11 的敏感性。 Tβ4 大量表現可以增加大腸癌細胞對 doxorubicin 與 etoposide 之引發凋亡的抵抗力,但對於 5-FU 與 irinotecan 的毒殺作用則無影響。Tβ4 大量表現可以增加大腸癌細胞中 Survivin 的表現,並減少兩種 Topoisomerase II 抑制劑 (doxorubicin 和 etoposide) 活化 caspase-9 與 caspase-3。 本研究也發現,Survivin 呈陽性反應之第三期大腸癌病患有較差的存活率。 
本研究可做為深入探討 mTβ4 基因轉錄調控的基礎,以及了解 Tβ4 大量表現,如何使大腸癌細胞躲避免疫系統的監控與增加其抗藥性, 這些發現有助於未來開發治療大腸癌的新藥。
Thymosin β4 (Tβ4), a small peptide originally isolated from calf thymus, modulates the formation of F-actin microfilaments by sequestering the monomeric G-actin. Recent studies have shown that overexpression of the Tβ4 gene occurs in many human tumors. However, little is known about the regulation of Tβ4 gene expression and the effects of Tβ4 on tumor.
Our present study analyzed in details of the promoter of the mouse thymosin β4 (mTβ4) gene. This study found that the first exon of mTβ4 gene spans 56 bp with its cap site situated in a putative initiator highly similar to the consensus mammalian sequence. In addition, a TATA box-like motif and two consecutive downstream promoter elements were found and their locations are in agreement with the ones present in a variety of other genes. This study showed that the expression level of reporter gene driven by the -118 to +56 region of mTβ4 gene was approximately 8-fold higher than that directed by the SV40 promoter and significant promoter activity was found to be associated with the -57 to +56 fragment. A silencer that was bound by a nuclear protein was located in the region between the -168 to -119 and an enhancer whose effect did not seem to be dependent on protein binding was identified in the -118 to -89 region of this gene. Interestingly, neither of the regulatory sequences affected reporter expression directed by a heterologous viral promoter. Unexpectedly, the mTβ4 promoter functioned effectively in HeLa cervical carcinoma cells.
Since a downregulation of Fas in the Tβ4 overexpressing SW480 colon cancer cells and a reduction in their susceptibility to the cytotoxicity of an anti-Fas IgM (CH-11) have been demonstrated in our previous study. Effects of Tβ4 overexpressing on the apoptosis of SW480 cells induced by other cytotoxic agents were assessed. As expected, Tβ4 overexpressers were also more resistant to the toxic effect of the FasL-bearing Jurkat cells. However, pretreating these cells with an MMP inhibitor not only increased Fas levels but also abolished their resistance to CH-11. Interestingly, even though the susceptibilities of the Tβ4 overexpressers to 5-FU and irinotecan remained the same, these cells were more resistant to doxorubicin and etoposide which triggered apoptosis via a mitochondrial pathway. Concordantly, activation of both caspase-9 and caspase-3 by the two aforementioned topoisomerase II inhibitors was diminished in the Tβ4 overexpressers accounted possibly by an increased expression of Survivin, an anti-apoptotic factor whose expression was upregulated by β-catenin. Finally, poor survival was found in stage III colon cancer patients whose tumors were stained positively by the anti-Survivin antibody.
Taken together, this study provide crucial information for further elucidation of the transcriptional regulation of mTβ4 gene as well as for designing a better approach for colon cancer treatment by targeting Tβ4 expression.
中文摘要2
英文摘要3
第一章、 緒論6
一、 研究目標7
二、 背景介紹7
1、胸腺素β簡介7
2、大腸癌簡介9
3、胸腺素β 與大腸癌的關係10
三、 實驗設計12
第二章、 研究材料與方法13
一、 細胞培養14
二、 質體構築14
三、 細胞轉染16
四、 報告基因活性分17
五、 引子延伸 (primer extension) 17
六、 生物資訊分析19
七、 膠體電泳位移分析 (EMSA) 20
八、 細胞存活分析 (MTT assay) 21
九、 西方墨點法 (Western blotting) 21
十、 流式細胞儀分析23
十一、 反轉錄-聚合酶鏈鎖反應 (RT-PCR) 23
十二、 Caspase 活性分析25
十三、 免疫化學組織染色25
十四、 統計方法25
第三章、 小鼠胸腺素β4基因啟動子活性的分析26
一、 前言27
二、 實驗過程28
三、 研究結果28
四、 討論31
附圖33
第四章、 胸腺素β4基因大量表現對免疫細胞
及抗癌藥物誘發大腸癌細胞凋亡之影響40
一、 前言41
二、 實驗過程42
三、 研究結果43
四、 討論46
附圖49
附表59
第五章、 綜合討論與未來展望61
一、 綜合討論62
二、 未來展望65
參考文獻69
1. Hooper, J.A., McDaniel, M.C., Thurman, G.B., Cohen, G.H., Schulof, R.S. and Goldstein, A.L. (1975) Purification and properties of bovine thymosin. Ann N Y Acad Sci, 249, 125-44.
2. Cohen, G.H., Hopper, J.A. and Goldstein, A.L. (1975) Thymosin-induced differentiation of murine thymocytes in allogeneic mixed lymphocyte cultures. Ann N Y Acad Sci, 249, 145-53.
3. Schafer, L.A., Goldstein, A.L., Gutterman, J.U. and Hersh, E.M. (1976) In vitro and in vivo studies with thymosin in cancer patients. Ann N Y Acad Sci, 277, 609-20.
4. Marshall, G.D., Jr., Low, T.L., Thurman, G.B., Hu, S.K., Rossio, J.L., Trivers, G. and Goldstein, A.L. (1978) Overview of thymosin activity. Cancer Treat Rep, 62, 1731-7.
5. Low, T.L. and Goldstein, A.L. (1979) The chemistry and biology of thymosin. II. Amino acid sequence analysis of thymosin alpha1 and polypeptide beta1. J Biol Chem, 254, 987-95.
6. Hannappel, E. and Huff, T. (2003) The thymosins. Prothymosin alpha, parathymosin, and beta-thymosins: structure and function. Vitam Horm, 66, 257-96.
7. Low, T.L., Hu, S.K. and Goldstein, A.L. (1981) Complete amino acid sequence of bovine thymosin beta 4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci U S A, 78, 1162-6.
8. Huff, T., Muller, C.S., Otto, A.M., Netzker, R. and Hannappel, E. (2001) beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol, 33, 205-20.
9. Grillon, C., Rieger, K., Bakala, J., Schott, D., Morgat, J.L., Hannappel, E., Voelter, W. and Lenfant, M. (1990) Involvement of thymosin beta 4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett, 274, 30-4.
10. Voelter, W., Kapuzniotu, A., Mihelic, M., Gurvits, B., Abrahamian, G. and Galoyan, A. (1995) The interaction of (1-4)-fragment of thymosin beta 4 with calmodulin-sensitive cAMP phosphodiesterase from hypothalamus. Neurochem Res, 20, 55-9.
11. Safer, D., Elzinga, M. and Nachmias, V.T. (1991) Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem, 266, 4029-32.
12. Feinberg, J., Heitz, F., Benyamin, Y. and Roustan, C. (1996) The N-terminal sequences (5-20) of thymosin beta 4 binds to monomeric actin in an alpha-helical conformation. Biochem Biophys Res Commun, 222, 127-32.
13. Yu, F.X., Lin, S.C., Morrison-Bogorad, M. and Yin, H.L. (1994) Effects of thymosin beta 4 and thymosin beta 10 on actin structures in living cells. Cell Motil Cytoskeleton, 27, 13-25.
14. Sanger, J.M., Golla, R., Safer, D., Choi, J.K., Yu, K.R., Sanger, J.W. and Nachmias, V.T. (1995) Increasing intracellular concentrations of thymosin beta 4 in PtK2 cells: effects on stress fibers, cytokinesis, and cell spreading. Cell Motil Cytoskeleton, 31, 307-22.
15. Conlon, J.M., Grimelius, L., Wallin, G. and Thim, L. (1988) Isolation and structural characterization of thymosin-beta 4 from a human medullary thyroid carcinoma. J Endocrinol, 118, 155-9.
16. Hall, A.K. (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer, 48, 672-7.
17. Weterman, M.A., van Muijen, G.N., Ruiter, D.J. and Bloemers, H.P. (1993) Thymosin beta-10 expression in melanoma cell lines and melanocytic lesions: a new progression marker for human cutaneous melanoma. Int J Cancer, 53, 278-84.
18. bCalifano, D., Monaco, C., Santelli, G., Giuliano, A., Veronese, M.L., Berlingieri, M.T., de Franciscis, V., Berger, N., Trapasso, F., Santoro, M., Viglietto, G. and Fusco, A. (1998) Thymosin beta-10 gene overexpression correlated with the highly malignant neoplastic phenotype of transformed thyroid cells in vivo and in vitro. Cancer Res, 58, 823-8.
19. Santelli, G., Califano, D., Chiappetta, G., Vento, M.T., Bartoli, P.C., Zullo, F., Trapasso, F., Viglietto, G. and Fusco, A. (1999) Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am J Pathol, 155, 799-804.
20. Bao, L., Loda, M., Janmey, P.A., Stewart, R., Anand-Apte, B. and Zetter, B.R. (1996) Thymosin beta 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med, 2, 1322-8.
21. Clark, E.A., Golub, T.R., Lander, E.S. and Hynes, R.O. (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532-5.
22. Varghese, S. and Kronenberg, H.M. (1991) Rat thymosin beta 4 gene. Intron-containing gene and multiple retroposons. J Biol Chem, 266, 14256-61.
23. Li, X., Zimmerman, A., Copeland, N.G., Gilbert, D.J., Jenkins, N.A. and Yin, H.L. (1996) The mouse thymosin beta 4 gene: structure, promoter identification, and chromosome localization. Genomics, 32, 388-94.
24. Yang, S.P., Lee, H.J. and Su, Y. (2005) Molecular cloning and structural characterization of the functional human thymosin beta4 gene. Mol Cell Biochem, 272, 97-105.
25. Su, Y., Chang, S.L. and Hsiao, H.L. (2000) Characterization of a 5'-flanking region supporting the transcription of mouse thymosin beta-4 in mouse NIH3T3 cells. Mol Cell Biochem, 203, 163-7.
26. Kinzler, K.W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell, 87, 159-70.
27. Aretz, S., Uhlhaas, S., Sun, Y., Pagenstecher, C., Mangold, E., Caspari, R., Moslein, G., Schulmann, K., Propping, P. and Friedl, W. (2004) Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene. Hum Mutat, 24, 370-80.
28. Ainsworth, P.J., Koscinski, D., Fraser, B.P. and Stuart, J.A. (2004) Family cancer histories predictive of a high risk of hereditary non-polyposis colorectal cancer associate significantly with a genomic rearrangement in hMSH2 or hMLH1. Clin Genet, 66, 183-8.
29. Atkin, W.S., Morson, B.C. and Cuzick, J. (1992) Long-term risk of colorectal cancer after excision of rectosigmoid adenomas. N Engl J Med, 326, 658-62.
30. Wynder, E.L. and Reddy, B.S. (1983) Dietary fat and fiber and colon cancer. Semin Oncol, 10, 264-72.
31. Boland, C.R. (2004) Understanding familial colorectal cancer-finding the corner pieces and filling in the center of the puzzle. Gastroenterology, 127, 334-8.
32. Lynch, H.T., Brand, R.E. and Locker, G.Y. (2004) Inflammatory bowel disease in Ashkenazi Jews: implications for familial colorectal cancer. Fam Cancer, 3, 229-32.
33. Abdel-Rahman, W.M. and Peltomaki, P. (2004) Molecular basis and diagnostics of hereditary colorectal cancers. Ann Med, 36, 379-88.
34. Francini, G., Petrioli, R., Lorenzini, L., Mancini, S., Armenio, S., Tanzini, G., Marsili, S., Aquino, A., Marzocca, G., Civitelli, S. and et al. (1994) Folinic acid and 5-fluorouracil as adjuvant chemotherapy in colon cancer. Gastroenterology, 106, 899-906.
35. Stathopoulos, G.P., Rigatos, S.K., Malamos, N.A., Stathopoulos, J.G., Thallasinou, P., Papazachariou, E., Antoniou, F., Kondopodis, E. and Xynotroulas, J. (2004) Long-term survival of patients with advanced colorectal cancer may not be due to the response to chemotherapy. Oncol Rep, 12, 1295-300.
36. Pawlak, G. and Helfman, D.M. (2001) Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev, 11, 41-7.
37. Verghese-Nikolakaki, S., Apostolikas, N., Livaniou, E., Ithakissios, D.S. and Evangelatos, G.P. (1996) Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer, 74, 1441-4.
38. Califano, D., Monaco, C., Santelli, G., Giuliano, A., Veronese, M.L., Berlingieri, M.T., de Franciscis, V., Berger, N., Trapasso, F., Santoro, M., Viglietto, G. and Fusco, A. (1998) Thymosin beta-10 gene overexpression correlated with the highly malignant neoplastic phenotype of transformed thyroid cells in vivo and in vitro. Cancer Res, 58, 823-8.
39. Sardi, I., Tintori, V., Marchi, C., Veltroni, M., Lippi, A., Tucci, F., Tamburini, A., Bernini, G. and Faulkner, L. (2002) Molecular profiling of high-risk neuroblastoma by cDNA array. Int J Mol Med, 9, 541-5.
40. Chakravatri, A., Zehr, E.M., Zietman, A.L., Shipley, W.U., Goggins, W.B., Finkelstein, D.M., Young, R.H., Chang, E.L. and Wu, C.L. (2000) Thymosin beta-15 predicts for distant failure in patients with clinically localized prostate cancer-results from a pilot study. Urology, 55, 635-8.
41. Gold, J.S., Bao, L., Ghoussoub, R.A., Zetter, B.R. and Rimm, D.L. (1997) Localization and quantitation of expression of the cell motility-related protein thymosin beta15 in human breast tissue. Mod Pathol, 10, 1106-12.
42. Xie, D., Jauch, A., Miller, C.W., Bartram, C.R. and Koeffler, H.P. (2002) Discovery of over-expressed genes and genetic alterations in breast cancer cells using a combination of suppression subtractive hybridization, multiplex FISH and comparative genomic hybridization. Int J Oncol, 21, 499-507.
43. Kobayashi, T., Okada, F., Fujii, N., Tomita, N., Ito, S., Tazawa, H., Aoyama, T., Choi, S.K., Shibata, T., Fujita, H. and Hosokawa, M. (2002) Thymosin-beta4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol, 160, 869-82.
44. Vogelstein, B. and Kinzler, K.W. (1993) The multistep nature of cancer. Trends Genet, 9, 138-41.
45. Quigley, J.P. and Armstrong, P.B. (1998) Tumor cell intravasation alu-cidated: the chick embryo opens the window. Cell, 94, 281-4.
46. Wang, W.S., Chen, P.M., Hsiao, H.L., Wang, H.S., Liang, W.Y. and Su, Y. (2004) Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene, 23, 6666-71.
47. Wang, W.S., Chen, P.M., Hsiao, H.L., Ju, S.Y. and Su, Y. (2003) Overexpression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene, 22, 3297-306.
48. Zalvide, J.B., Alvarez, C.V., Vidal, A., Dieguez, C., Vega, F.V. and Dominguez, F. (1995) Regulation of thymosin beta 4 mRNA levels during cell proliferation. Cell Prolif, 28, 85-91.
49. Otero, A., Bustelo, X.R., Pichel, J.G., Freire, M. and Gomez-Marquez, J. (1993) Transcript levels of thymosin beta 4, an actin-sequestering peptide, in cell proliferation. Biochim Biophys Acta, 1176, 59-63.
50. Gomez-Marquez, J., Franco del Amo, F., Carpintero, P. and Anadon, R. (1996) High levels of mouse thymosin beta4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta, 1306, 187-93.
51. Lugo, D.I., Chen, S.C., Hall, A.K., Ziai, R., Hempstead, J.L. and Morgan, J.I. (1991) Developmental regulation of beta-thymosins in the rat central nervous system. J Neurochem, 56, 457-61.
52. Leonard, D.G., Ziff, E.B. and Greene, L.A. (1987) Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells. Mol Cell Biol, 7, 3156-67.
53. Atkinson, M.J., Freeman, M.W. and Kronenberg, H.M. (1990) Thymosin beta 4 is expressed in ROS 17/2.8 osteosarcoma cells in a regulated manner. Mol Endocrinol, 4, 69-74.
54. Shimamura, R., Kudo, J., Kondo, H., Dohmen, K., Gondo, H., Okamura, S., Ishibashi, H. and Niho, Y. (1990) Expression of the thymosin beta 4 gene during differentiation of hematopoietic cells. Blood, 76, 977-84.
55. Smale, S.T. and Kadonaga, J.T. (2003) The RNA polymerase II core promoter. Annu Rev Biochem, 72, 449-79.
56. Girardi, M., Sherling, M.A., Filler, R.B., Shires, J., Theodoridis, E., Hayday, A.C. and Tigelaar, R.E. (2003) Anti-inflammatory effects in the skin of thymosin-beta4 splice-variants. Immunology, 109, 1-7.
57. Rudin, C.M., Engler, P. and Storb, U. (1990) Differential splicing of thymosin beta 4 mRNA. J Immunol, 144, 4857-62.
58. Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Nemes, A., Temper, V., Razin, A. and Cedar, H. (1994) Sp1 elements protect a CpG island from de novo methylation. Nature, 371, 435-8.
59. Prioleau, M.N., Nony, P., Simpson, M. and Felsenfeld, G. (1999) An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. Embo J, 18, 4035-48.
60. Igney, F.H. and Krammer, P.H. (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol, 71, 907-20.
61. Geertsen, R., Hofbauer, G., Kamarashev, J., Yue, F.Y. and Dummer, R. (1999) Immune escape mechanisms in malignant melanoma. Int J Mol Med, 3, 49-57.
62. Berke, G. (1995) The CTL's kiss of death. Cell, 81, 9-12.
63. Eischen, C.M., Schilling, J.D., Lynch, D.H., Krammer, P.H. and Leibson, P.J. (1996) Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis. J Immunol, 156, 2693-9.
64. Liu, C.C., Walsh, C.M., Eto, N., Clark, W.R. and Young, J.D. (1995) Morphologic and functional characterization of perforin-deficient lymphokine-activated killer cells. J Immunol, 155, 602-8.
65. Zamai, L., Ahmad, M., Bennett, I.M., Azzoni, L., Alnemri, E.S. and Perussia, B. (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med, 188, 2375-80.
66. Antonsson, B. (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem, 256-257, 141-55.
67. Li, H., Zhu, H., Xu, C.J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491-501.
68. Bergmann-Leitner, E.S. and Abrams, S.I. (2000) Influence of interferon gamma on modulation of Fas expression by human colon carcinoma cells and their subsequent sensitivity to antigen-specific CD8+ cytotoxic T lymphocyte attack. Cancer Immunol Immunother, 49, 193-207.
69. Bergmann-Leitner, E.S. and Abrams, S.I. (2000) Differential role of Fas/Fas ligand interactions in cytolysis of primary and metastatic colon carcinoma cell lines by human antigen-specific CD8+ CTL. J Immunol, 164, 4941-54.
70. Mitsiades, N., Yu, W.H., Poulaki, V., Tsokos, M. and Stamenkovic, I. (2001) Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res, 61, 577-81.
71. Lacour, S., Hammann, A., Wotawa, A., Corcos, L., Solary, E. and Dimanche-Boitrel, M.T. (2001) Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res, 61, 1645-51.
72. Wang, S. and El-Deiry, W.S. (2003) Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci U S A, 100, 15095-100.
73. Arango, D., Wilson, A.J., Shi, Q., Corner, G.A., Aranes, M.J., Nicholas, C., Lesser, M., Mariadason, J.M. and Augenlicht, L.H. (2004) Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer, 91, 1931-46.
74. Kohli, M., Yu, J., Seaman, C., Bardelli, A., Kinzler, K.W., Vogelstein, B., Lengauer, C. and Zhang, L. (2004) SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci U S A, 101, 16897-902.
75. Hurwitz, H.I., Fehrenbacher, L., Hainsworth, J.D., Heim, W., Berlin, J., Holmgren, E., Hambleton, J., Novotny, W.F. and Kabbinavar, F. (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol, 23, 3502-8.
76. Shiraki, K., Tsuji, N., Shioda, T., Isselbacher, K.J. and Takahashi, H. (1997) Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A, 94, 6420-5.
77. Strand, S., Vollmer, P., van den Abeelen, L., Gottfried, D., Alla, V., Heid, H., Kuball, J., Theobald, M., Galle, P.R. and Strand, D. (2004) Cleavage of CD95 by matrix metalloproteinase-7 induces apoptosis resistance in tumour cells. Oncogene, 23, 3732-6.
78. Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E. and Kolesnick, R. (2001) Ceramide enables fas to cap and kill. J Biol Chem, 276, 23954-61.
79. Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R. and Gulbins, E. (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem, 276, 20589-96.
80. Chao, D.T. and Korsmeyer, S.J. (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol, 16, 395-419.
81. Takahashi, R. (2001) [Cell death protection by anti-apoptotic factor]. Rinsho Shinkeigaku, 41, 1067-9.
82. Marusawa, H., Matsuzawa, S., Welsh, K., Zou, H., Armstrong, R., Tamm, I. and Reed, J.C. (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. Embo J, 22, 2729-40.
83. Song, Z., Yao, X. and Wu, M. (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem, 278, 23130-40.
84. Sarela, A.I., Scott, N., Ramsdale, J., Markham, A.F. and Guillou, P.J. (2001) Immunohistochemical detection of the anti-apoptosis protein, survivin, predicts survival after curative resection of stage II colorectal carcinomas. Ann Surg Oncol, 8, 305-10.
85. Miller, M., Smith, D., Windsor, A. and Kessling, A. (2001) Survivin gene expression and prognosis in recurrent colorectal cancer. Gut, 48, 137-8.
86. Fearon, E.R. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell, 61, 759-67.
87. O'Connell, J., Houston, A., Bennett, M.W., O'Sullivan, G.C. and Shanahan, F. (2001) Immune privilege or inflammation? Insights into the Fas ligand enigma. Nat Med, 7, 271-4.
88. Streilein, J.W. (1995) Unraveling immune privilege. Science, 270, 1158-9.
89. Cardi, G., Heaney, J.A., Schned, A.R. and Ernstoff, M.S. (1998) Expression of Fas(APO-1/CD95) in tumor-infiltrating and peripheral blood lymphocytes in patients with renal cell carcinoma. Cancer Res, 58, 2078-80.
90. O'Connell, J., Bennett, M.W., O'Sullivan, G.C., Roche, D., Kelly, J., Collins, J.K. and Shanahan, F. (1998) Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. J Pathol, 186, 240-6.
91. O'Connell, J., O'Sullivan, G.C., Collins, J.K. and Shanahan, F. (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med, 184, 1075-82.
92. O'Connell, J., Bennett, M.W., Nally, K., Houston, A., O'Sullivan, G.C. and Shanahan, F. (2000) Altered mechanisms of apoptosis in colon cancer: Fas resistance and counterattack in the tumor-immune conflict. Ann N Y Acad Sci, 910, 178-92; discussion 193-5.
93. Deng, J., Miller, S.A., Wang, H.Y., Xia, W., Wen, Y., Zhou, B.P., Li, Y., Lin, S.Y. and Hung, M.C. (2002) beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell, 2, 323-34.
94. Goldstein, A.L., Hannappel, E. and Kleinman, H.K. (2005) Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med, 11, 421-9.
95. Grant, D.S., Rose, W., Yaen, C., Goldstein, A., Martinez, J. and Kleinman, H. (1999) Thymosin beta4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis, 3, 125-35.
96. Olave, I.A., Reck-Peterson, S.L. and Crabtree, G.R. (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem, 71, 755-81.
97. Cha, H.J., Jeong, M.J. and Kleinman, H.K. (2003) Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst, 95, 1674-80.
98. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W.E., Serve, H. and Muller-Tidow, C. (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031-41.
99. Grant, D.S., Kinsella, J.L., Kibbey, M.C., LaFlamme, S., Burbelo, P.D., Goldstein, A.L. and Kleinman, H.K. (1995) Matrigel induces thymosin beta 4 gene in differentiating endothelial cells. J Cell Sci, 108 ( Pt 12), 3685-94.
100. Malinda, K.M., Sidhu, G.S., Mani, H., Banaudha, K., Maheshwari, R.K., Goldstein, A.L. and Kleinman, H.K. (1999) Thymosin beta4 accelerates wound healing. J Invest Dermatol, 113, 364-8.
101. Philp, D., Goldstein, A.L. and Kleinman, H.K. (2004) Thymosin beta4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev, 125, 113-5.
102. Philp, D., Huff, T., Gho, Y.S., Hannappel, E. and Kleinman, H.K. (2003) The actin binding site on thymosin beta4 promotes angiogenesis. Faseb J, 17, 2103-5.
103. Mori, M., Barnard, G.F., Mimori, K., Ueo, H., Akiyoshi, T. and Sugimachi, K. (1995) Overexpression of matrix metalloproteinase-7 mRNA in human colon carcinomas. Cancer, 75, 1516-9.
104. Ishikawa, T., Ichikawa, Y., Mitsuhashi, M., Momiyama, N., Chishima, T., Tanaka, K., Yamaoka, H., Miyazakic, K., Nagashima, Y., Akitaya, T. and Shimada, H. (1996) Matrilysin is associated with progression of colorectal tumor. Cancer Lett, 107, 5-10.
105. Adachi, Y., Yamamoto, H., Itoh, F., Arimura, Y., Nishi, M., Endo, T. and Imai, K. (2001) Clinicopathologic and prognostic significance of matrilysin expression at the invasive front in human colorectal cancers. Int J Cancer, 95, 290-4.
106. Zeng, Z.S., Shu, W.P., Cohen, A.M. and Guillem, J.G. (2002) Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res, 8, 144-8.
107. Yamamoto, H., Iku, S., Adachi, Y., Imsumran, A., Taniguchi, H., Nosho, K., Min, Y., Horiuchi, S., Yoshida, M., Itoh, F. and Imai, K. (2003) Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol, 199, 176-84.
108. Kioi, M., Yamamoto, K., Higashi, S., Koshikawa, N., Fujita, K. and Miyazaki, K. (2003) Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene, 22, 8662-70.
109. Noe, V., Fingleton, B., Jacobs, K., Crawford, H.C., Vermeulen, S., Steelant, W., Bruyneel, E., Matrisian, L.M. and Mareel, M. (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 114, 111-118.
110. Wong, A.J., Ruppert, J.M., Eggleston, J., Hamilton, S.R., Baylin, S.B. and Vogelstein, B. (1986) Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science, 233, 461-4.
111. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S. and Leder, P. (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A, 79, 7837-41.
112. Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429, 457-63.
113. Zhang, T., Otevrel, T., Gao, Z., Ehrlich, S.M., Fields, J.Z. and Boman, B.M. (2001) Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res, 61, 8664-7.
114. Hannappel, E. and van Kampen, M. (1987) Determination of thymosin beta 4 in human blood cells and serum. J Chromatogr, 397, 279-85.
115. Frohm, M., Gunne, H., Bergman, A.C., Agerberth, B., Bergman, T., Boman, A., Liden, S., Jornvall, H. and Boman, H.G. (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem, 237, 86-92.
116. Sosne, G., Hafeez, S., Greenberry, A.L., 2nd and Kurpakus-Wheater, M. (2002) Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res, 24, 268-73.
117. Malinda, K.M., Goldstein, A.L. and Kleinman, H.K. (1997) Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. Faseb J, 11, 474-81.
118. Philp, D., Badamchian, M., Scheremeta, B., Nguyen, M., Goldstein, A.L. and Kleinman, H.K. (2003) Thymosin beta 4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen, 11, 19-24.
119. Zarbock, J., Oschkinat, H., Hannappel, E., Kalbacher, H., Voelter, W. and Holak, T.A. (1990) Solution conformation of thymosin beta 4: a nuclear magnetic resonance and simulated annealing study. Biochemistry, 29, 7814-21.
120. Domanski, M., Hertzog, M., Coutant, J., Gutsche-Perelroizen, I., Bontems, F., Carlier, M.F., Guittet, E. and van Heijenoort, C. (2004) Coupling of folding and binding of thymosin beta4 upon interaction with monomeric actin monitored by nuclear magnetic resonance. J Biol Chem, 279, 23637-45.
121. Huff, T., Rosorius, O., Otto, A.M., Muller, C.S., Ballweber, E., Hannappel, E. and Mannherz, H.G. (2004) Nuclear localisation of the G-actin sequestering peptide thymosin beta4. J Cell Sci, 117, 5333-41.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔