跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王光毅
研究生(外文):Kuang-Yih Wang
論文名稱:神經膠質瘤細胞在輻射照射後高張溶液處理導致潛在致死傷害固定現象機制研究
論文名稱(外文):The Mechanism of Post-irradiation Hypertonic Treatment Induced Fixation of Potentially Lethal Damage in Glioma Cells
指導教授:黃正仲黃正仲引用關係吳國海
指導教授(外文):Jeng-Jong HwangFrank Ngo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
中文關鍵詞:神經膠質瘤輻射照射高張溶液潛在致死傷害固定
外文關鍵詞:GliomairradiationHypertonicPotentially Lethal Damage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
對於輻射潛在致死損傷(radiation potential lethal damage, PLD)之分子機制,三十年來一直不甚清楚。本研究試圖應用高密度寡核酸微陣列技術及生物資訊學來解答輻射照射後0.5M NaCl 高張溶液處理對於人類腦神經膠質瘤U87MG 細胞株之PLD 之影響。微陣列實驗結果顯示,於20,173 個基因中,有210 個基因之表現量明顯改變,根據生物功能分類顯示其與代謝及能量、訊息傳遞、運輸、局部化、刺激反應、細胞內反應過程調控、細胞型態發生、免疫反應、細胞週期、神經生理過程、細胞生長、細胞死亡等功能有關。其中,有一組位於粒線體DNA 上之基因表現被抑制,包括MTND1、MTND3、MTCO1、MTCO2 和MTATP8 這5 個基因之共同抑制表現會導致粒線體之ATP 合成功能失常,經由細胞實驗也確認細胞內粒線體膜電位的確有降低的情形發生。同時,粒線體轉譯機轉之抑制及ATP 能量耗損本身會全面影響細胞正常運作並引發細胞壞死(necrosis)。此外,我們也確認部分細胞會經由衰老(senescence)的方式走向死亡。此一能量缺損病變,應可解釋固定PLD 會增進細胞死亡之原因,同時也說明為何在高張溶液處理後DNA 修補蛋白運輸會被抑制。此外,H2AX 磷酸化之測定則發現DNA 之雙股螺旋斷裂顯著增加,此一觀察與細胞生存曲線中α 值增加相符。DNA content 分析結果則顯示細胞週期檢查點改變(cell-cycle checkpoints) 與高張溶液增進細胞死亡亦相關。本研究結果將有助於解答固定輻射潛在致死損傷的分子機制以及細胞死亡方式,同時這也是利用系統性生物學高通量微陣列技術得到的新發現。
The molecular mechanism underlying radiation potentially lethal damage (PLD) has been of great interest, yet remains unclear, in radiation biology for more than 30 years. In this study, we applied high-density oligonucleotide microarray and bioinformatics to investigate the hypertonic effect on PLD in U87MG glioma cells. Analysis of the microarray data showed that the expression levels of 210 genes out of 20,173 genes were altered. Classification of these affected 210 genes according to their biological functions indicated that they are involved in metabolism/energy, cell communication/signaling, transport, localization, response to stimuli, cell organization biogenesis, morphogenesis, immune response, cell cycle, neurophysiological process, cell proliferation and cell death. In addition, a unique set of mitochondrial genes responsible for ATP production including MTND1, MTND3, MTCO1, MTCO2 and MTATP8 were down-regulated. Inhibition of mitochondria transcription machinery and ATP exhaustion will affect cell's normal physiology and cause necrosis. Cell death through senescence was also observed. Such catastrophe action due to energy depletion following hypertonic treatment may explain not only the enhanced cell killing, but the inhibited repair protein mobility as well. Phosphorylated H2AX assay was also related with the increase of DNA double strand breaks (DSBs), which was consistent with the increased α component in the survival response curve. DNA histogram showed that the enhanced cell killing may depend on cell-cycle checkpoints. This investigation with systemic biology and high-throughput microarray may be helpful in elucidating molecular mechanism underlying PLD fixation.
壹. 中文摘要………………………………………………….- 4 -
貳. ABSTRACT………………………………………………- 5 -
叁. 前言……………………………………………………….- 6 -
潛在致死傷害( potentially lethal damage, PLD)與高張溶液環境………………………...- 6 -
細胞對輻射照射的反應與histone H2AX 的磷酸化…………………………...………...- 7 -
腦神經膠質瘤(Glioblastoma Multiforme)………………………………………….……....- 8 -
細胞死亡……………………………………………………………………………...….….- 9 -
肆. 材料與方法……………………………………………….- 10 -
U87MG 細胞株………………………………………………………………………...…..- 10 -
潛在致死傷害固定現象(PLD Fixation)…………………………………………...………- 11 -
細胞存活曲線……………………………………………………………………......…….- 12 -
細胞週期分析………………………………………………………………………...……- 12 -
測量DNA 損傷………………………………………………………………………….…- 13 -
粒線體基因表現壓抑現象的測量…………………………………..……………..…...…- 13 -
測量細胞內的粒線體內膜間電位改變……………………………………...………...….- 16 -
細胞死亡相關實驗…………………………………………………………………...……- 16 -
以不同的分析方法重新分析microarray data………………………………...……..……- 20 -
實驗數據的統計分析………………………………………………………………...……- 21 -
伍. 實驗結果與討論…………………………………………..- 22 -
U87MG 細胞株生長狀態………………………………………………...………………- 22 -
輻射照射後 高張/等張 溶液處理對細胞存活曲線的影響………………………….….- 22 -
透過流體細胞儀對細胞的細胞週期分布進行分析……………………………….……..- 24 -
透過流體細胞儀對細胞中γH2AX 的含量進行分析………………………….…………- 25 -
透過流體細胞儀對活細胞內粒線體內膜間電位(Mitochondrial Proton potential)高低進行分
析…………………….…………………………………………………………………..…- 27 -
利用即時定量PCR 驗證Microarray Data( Real-Time PCR )……………………...…….- 30 -
利用Caspase 3 Activity Assay 對細胞是否有經由apoptosis 走向死亡進行分析……...- 31 -
利用Annexin V / PI 雙染Assay 來測量不同時間點中有多少比率的Apoptosis 細胞…- 32 -
利用TUNEL Assay 測量有多少百分比細胞是以Apoptosis 走向死亡………………..…- 35 -
利用Trypan Blue Exclusion Assay 測量不同時間點necrosis 細胞佔所有細胞中百分比- 38 -
利用SA β-Gal Assay 測量細胞經由Senescence 走向死亡的比率…………………….….- 40 -
運用不同分析技巧重新分析欣茹的Microarray Data………………………………….…..- 42 -
陆. 結論………………………………………………………..- 51 -
柒. 參考文獻:………………………………………………….- 53 -
捌. Figures................................................................................ - 61 -
玖. Tables...................................................................................- 82 -
Appendix_A- Figure (Fit KEGG pathway of 210 genes)………...….- 86 -
Appendix_A- Table (Functional Group analysis of 210 genes)….…..- 95 -
Appendix_B (Hsin-Ju thesis data).......................................................- 112 -
Appendix_C (Mammalian Cell Death)................................................- 116 -
􀂋 Atsushi T, Keiichi S, Peter BD, Shin J, Rosanna W, Fei YL, Soma M, Stacey I, Cameron A, Paul AH, James TR. Expression of p57KIP2 Potently Blocks the Growth of Human Astrocytomas and Induces Cell Senescence, American Journal of Pathology 2000; 157:919-932
􀂋 Bakhtiar Y, Xiaohong Y, Yancey G, Donald WK, Ralph RW. Transcriptional Targeting of Adenovirally Delivered Tumor Necrosis Factor by Temozolomide in Experimental Glioblastoma, Cancer Research 2004;64:6381–6384
􀂋 Behin A, Khe HX, Carpentier AF, Delattre JY. Primary brain tumor in adults, The Lancet 2003; 361:323-331.
􀂋 Burton EC, Prados MD. Malignant gliomas. Current Treatment Options in Oncology 2000; 1:459-468.
􀂋 Busse PM, Bose SK, Jones RW, Tolmach LJ. The action of caffeine on X-irradiated Hela cells. II. Synergistic lethality, Radiation Research 1977; 71:666-677.
􀂋 Carter MG, Hamatani T, Sharov AA, Carmack CE, Qian Y, Aiba K, Ko NT, Dudekula DB, Brzoska PM, Hwang SS, Ko MS. In situ-synthesized novol microarray optimized for mouse stem cell and early developmental expression profiling, Genome Research 2003; 13:1011-1021.
􀂋 Celeste A, Oscar FC, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks, Natural Cell Biology 2003; 5:675-679.
􀂋 Chadwick KH, Leenhouts HP. A molecular theory of cell survival, Physics in Medicine and Biology 1973; 18:78-87.
􀂋 Chadwick KH, Leenhouts HP. The molecular theory of radiation biology. Springer-Verlag,Berlin 1981;
􀂋 Chen SJ, Kitayama S, Arai S, Masuda T, Matsuyama A. Mechanism of radiosensitizing effect of chloride ion on E. coli, International Journal of Radiation Biology 1986; 45:799-808.
􀂋 David SR, Miroslav PB, David EM, Rork K, Mila B, David MK, Jeremy T, and Samir MH. Distinctive Molecular Profiles of High-Grade and Low-Grade Gliomas Based on Oligonucleotide Microarray Analysis, Cancer Research 2001, 61:6885–6891.
􀂋 Dettor CM, Dewey WC, Winans LF, Noel JS. Enhancement of x-ray damage in synchronous Chinese hamster cells by hypertonic treatment, Radiation Research 1972; 52:352-372.
􀂋 Dmitrieva NI, Bulavin DV, Burg MB. High NaCl causes Mre11 to leave the nucleus, disrupting DNA damage signaling and repair, American Journal of physiology 2003; 285:F266-F274.
􀂋 Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA. Onto-Tools, the toolkit of the modern biologist:Onto-Express, Onto-Compare, Onto-Design and Onto-Translate, Nucleic Acids Research 2003; 31:3775-3781.
􀂋 Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression, The Genomics 2003; 81:98-104.
􀂋 Durocher D, Jackson S. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Current Opinion in Cell Biology 2001; 13:225-231.
􀂋 Endoh D, Okui T, Kon Y, Hayashi M. Hypertonic treatment inhibits radiation-induced nuclear translocation of the Ku proteins G22p1 (Ku70) and Xrcc5 (Ku80) in rat fibroblasts, Radiation Research 2001; 155:320-327.
􀂋 Fernandez SP, Enriquez JA, Montoya J. Replication and transcription of mammalian mitochondrial DNA, Experimental Physiology 2003; 88:41-56.
􀂋 Hall EJ. Radiobiology for the radiologist (5th edition). 2000.
􀂋 Herfarth KK, Gutwein S, Debus J. Postoperative radiotherapy of astrocytomas, Seminars in Surgical Oncology 2001; 20:13-23.
􀂋 Howijmakers JH. Genome maintenance mechanisms for preventing cancer, Nature 2001; 411:366-374.
􀂋 Ikebuchi M, Aoyama T. Hypertonicity expresses three types of X-ray induced potentially lethal damage (PLD) in actively growing V79 Chinese hamster cells, Radiation Research 1988; 29:12
􀂋 Ikebuchi M, Kimura H, Hill CK, Aoyama T. Are three forms of potentially lethal damage expressed after x irradiation by treatment with hypertonic solutions in Chinese hamster V79 cells? Radiation Research 1995; 141:19-27.
􀂋 Iliakis G. Effects of b-arabinofuranosyladenine on the growth and repair of potentially lethal damage in Ehrlich ascites tumor cells, Radiation Research 1980; 83:537-552.
􀂋 Iliakis G. Characterization and properties of repair of potentially lethal damage as measured with the help of b-arabinofuranosyladenine in plateau-phase EAT cells, Radiation Research 1981; 86:77-90.
􀂋 Iliakis G, Nusse M. Evidence that repair and expression of potentially lethal damage cause the variations in cell survival after X irradiation observed through the cell cycle in Ehrlich ascities tumor cells, Radiation Research 1983; 95:87-107.
􀂋 Iliakis G, Bryant P, Ngo F. Independent forms of potentially lethal damage fixed in plateau-phase Chinese hamster cells by postirradiation treatment in hypertonic salt solution or araA, Radiation Research 1985; 104:329-345.
􀂋 Iliakis G. Radiation-induced potentially lethal damage: DNA lesions susceptible toe fixation, International Journal of Radiation Biology 1988; 53:541-584.
􀂋 Ingrida M, Vida K, Benediktas J. Experimental survey of non-clonogenic viability assays for adherent cells in vitro. Toxicology in Vitro 2004; 18:639-648
􀂋 Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2004; 23:687-696.
􀂋 James AM, Murphy MP. How mitochondrial damage affects cell function, Journal of Biomedical Science 2002; 9:475-487.
􀂋 Jeong EK, Sun HP, Dong GK, Chung HT, Kim YY, Jung HW. The Combined Effect of Gamma Knife Irradiation and p53 Gene Transfection in Human Malignant Glioma Cell Lines, J Korean Neurosurg 2005; 37:48-53
􀂋 Jin W, Yaojiong W, Burton BY. Anticancer activity of Hemsleya amabilis extract, Life Sciences 2002; 71:2161–2170
􀂋 Kellerer AM, Rossi HH. The theory of dual radiation action, Curr Top Radiation Research 1972; 75:471-488.
􀂋 Khatri P, Draghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using Onto-Express, The Genomics 2002; 79:266-271.
􀂋 Kimura H, Yasui T, Aoyama T. Modification of radiation sensitivity of cultured cells by pre- and postirradiation incubation with dibutyryl cyclic AMP, Radiation Research 1981; 85:207-214.
􀂋 Kornblith PL, Walker MD, Cassady JR. Neurologic oncology Philadelphia: JB Lippincott. 1987; 35-48.
􀂋 Kosaka T, Kanebo I, Koide F. Correlation between non-repairable DNA lesions and fixation of cell damage by hypertonic solutions in Chinese hamster cells, International Journal of Radiation Biology 1990; 58:417.
􀂋 Liu Y. A study of G2/M arrest in irradiated U87 glioma cells by differential gene expression using cDNA microarray and real-time polymerase chain reaction. Master thesis, Institute of radiological science, National Yang-Ming University. 2003;
􀂋 McNally NJ, Hinchliffe M, Soranson J. The effect of post-irradiation anisotonic treatment on cell survival and repair of DNA damage, International Journal of Radiation Biology 1990; 57:503-512.
􀂋 Meena KT, Mark RG, Eric CH. Gene Expression Microarray Analysis Reveals YKL-40 to Be a Potential Serum Marker for Malignant Character in Human Glioma, Cancer Research 2002;62:4364–4368.
􀂋 Miller PJ, Hassanein RS, Giri PG, Kimler BF, Paul OB, Evans RG. Univariate and multivariate statistical analysis of high grade gliomas : The relationship of radiation dose and other prognostic factors, International Journal of Radiation Oncology Biology Physics 1990; 19:275-280.
􀂋 Modesti M, Kanaar R. DNA repair: spot(light)s on chromatin, Current Biology 2001; 11:R229-R232.
􀂋 Natalia ID, Maurice BB. Hypertonic stress response, Mutation Research 2005; 569:65-74.
􀂋 Nicotera P, Leist M. and Ferrando ME. Intracellular ATP, a switch in the decision between apoptosis and necrosis, Toxicol Lett 1998; 102-103:139-42.
􀂋 Okada H, Mak TW. Pathways of Apoptotic and Non-Apoptotic Death in Tumour Cells, Natural Reviews 2004; 4:592-603
􀂋 Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation, Radiation Research 1998; 150:S42-S51.
􀂋 Oscar FC, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Daniel CO, Motoyama N, Carpenter PB, Bonner WM, Chen J, Nussenzweig A. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Natural Cell Biology 2002; 4:993-997.
􀂋 Ozawa T. Mitochondrial genome mutation in cell death and aging, Journal of Bioenergetics and Biomembranes 1999; 31:377-390.
􀂋 Phillips RA, Tolmach LJ. Repair of potentially lethal damage in X-irradiated HeLa cells, Radiation Research 1966; 29:413-432.
􀂋 Potten CS. Perspectives on Mammalian Cell Death 1987
􀂋 Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage, Current Biology 2000; 10:886-895.
􀂋 Raaphorst GP, Frey HE, Kruuv J. Effect of salt solutions on radiosensitivity of mammalian cells. III. Treatment with hypertonic solutions, International Journal of Radiation Biology 1977; 32:109-126.
􀂋 Raaphorst GP, Dewey WC. A study of the repair of potentially lethal and sublethal radiation damage in Chinese hamster cells exposed to extremely hypo- or hypertonic NaCl solutions, Radiation Research 1979; 325-340.
􀂋 Raaphorst GP, Dewey WC. Fixation of potentially lethal radiation damage by post-irradiation exposure of Chinese Hamster cells to 0.5 M or 1.5 M NaCl solutions, International Journal of Radiation Biology 1979; 36:303-315.
􀂋 Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways, The Journal of cell Biology 2001; 153:613-620.
􀂋 Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive, Proceedings of the National Academy of Sciences of the United States of America 1988; 85:6465-6467.
􀂋 Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induces histone H2AX phosphorylation on serine 139, The American Society for Biochemistry and Molecular Biology 1998; 273:5858-5868.
􀂋 Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo, The Journal of cell Biology 1999; 146:905-916.
􀂋 Rogakou EP, Wilberto NN, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139, The American Society for Biochemistry and Molecular Biology 2000; 275:9390-9395.
􀂋 Roos WP, Binder A, Bohm L. The influence of chromatin structure on initial DNA damage and radiosensitivity in CHO-K1 and xrs1 cells at low doses of irradiation 1-10 Gy, Radiation and Environmental Biophysics 2002; 41:199-206.
􀂋 Salcman M. Survival in glioblastoma: Historical perspective, Nournal of Neurosergury 1980; 7:435-439.
􀂋 Schroy CB, Todd P. The effects of caffeine on the expression of potentially lethal and sublethal damage in γ-irradiated cultured mammalian cells, Radiation Research 1979; 78:312-316.
􀂋 Seungchan K, Edward RD, Ilya S, Kenneth RH, Stanley RH, Jeffrey MT, Gregory NF, and Wei Z. Identification of Combination Gene Sets for Glioma Classification, Molecular Cancer Therapeutics 2002, 1:1229–1236.
􀂋 Sharma RR, Singh DP, Pathak A, Khandelwal N, Sehgal CM, Kapoor R, Ghoshal S, Patel FD, Sharma SC. Local control of high-grade gliomas with limited volume irradiation versus whole brain irradiation, Neurology India 2003; 51:514-517.
􀂋 Stefan S, Vimlarani C, Norman E, Hal KH, Massoud M, Ekkehard D, Henning S. Effects of 5-aminolaevulinic acid on human ovarian cancer cells and human vascular endothelial cells in vitro. Journal of Photochemistry and Photobiology 2001; 64:8-20
􀂋 Tanabe K, Hiraoka W, Kuwabara M, Matsuda A, Ueda T, Sato F. Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chrolodeoxyadenosine, Radiation Research 1988; 29:172-181.
􀂋 Utsumi H, Elkind M. Potentially lethal damage versus sublethal damage: Independent repair processes in actively growing Chinese hamster cells, Radiation Research 1979; 77:346-360.
􀂋 Utsumi H, Elkind M. Two forms of potentially lethal damage have similar repair kinetics in plateau- and in log- phase cells, International Journal of Radiation Biology 1985; 47:569-580.
􀂋 Van Gent DC, Howijmakers JH, Kanaar R. Chromosomal stability and the DNA double-stranded break connection, Nature Reviews Genetics 2001; 2:196-206.
􀂋 Waldren CA, Rasko I. Caffeine enhancement of X-ray killing in cultured human and rodent cells, Radiation Research 1978; 73:95-110.
􀂋 Winans LF, Dewey WC, Dettor CM. Repair of sublethal and potentially lethal X-ray damage in synchronous Chinese hamster cells, Radiation Research 1972; 52:333-351.
􀂋 Zglinickia T, Saretzkia G, Ladhoffa J, Fagagnab AD, Jackson SP. Human cell senescence as a DNA damage response, Mechanisms of Ageing and Development 2005; 126:111–117
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文