|
[1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature(London), vol.354, p.56, (1991). [2]Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE, “C60: Buckyminsterfullerene,” Nature, vol. 318, pp.162-163, (1985). [3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “Theoretical study of a hypothetical metallic phase of carbon,” Nature, vol. 347, p.354, (1990). [4]A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, ” Theory of carbon nanotube growth,” Phys. Rev. B, vol.52, p.14850, (1995). [5]T. W. Ebbesen, “Carbon nanotubes - Preparation and properties,” CRC press, Inc., (1997). [6]www.the-scientist.com/yr1997/ jan/index_970106.htm. [7]JW Mintmire and CT White,”First-principles band structures of armchair. Nanotubes,” Applied Physics A Materials Science & Processing, vol.67, pp65-69, (1998). [8]S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of one nanometer diameter,” Nature, vol.363, pp603-605,(1993). [9]DS Bethune, CH Kiang, MS deVries, G. Gorman, R. Saroy, J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbon. nanotubes with single-atomic-layerwalls,” Nature, vol.363, p605, (1993). [10]M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, “Physics of Carbon nanotubes,” vol.33, p883, (1995). [11]Bonard JM, Kind H, Stöckli T, Nilsson LO, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, vol. 45, pp. 893-914, ( 2001) [12]J. C. Charlier and J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes,” Applied Physics A:Materials Science &Processing, vol.67, p.79, (1998). [13]MS Dresselhaus, G. Dresselhaus, PC Eklund, and R. Saito, “Carbon nanotubes,” Physics World 11, vol.33, p.38, (1998). [14]Bonard JM, Kind H, Stöckli T, Nilsson LO, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, vol. 45, pp. 893-914, ( 2001) [15]R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal., vol. 26, pp. 51, (1972). [16]Dingyong Zhong, Shuang Liu, Guangyu Zhang, E. G. Wang, “Large-scale well aligned carbon nitride nanotube films: low temperature growth and electron field emission,” Journal of Applied Physics, Vol. 89, pp. 5939-5943, (2001). [17]R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite, “Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene,” J. Catal., vol. 30, pp. 86, (1973). [18]G. G. Tibbetts, “Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes,” Appl. Phys. Lett., vol. 42, pp. 666–668, (1983). [19]A. Fonseca, K. Hernadi, P. Piedigrosso, JF Colomer, others, “Synthesis of single and multi-wall nanotubes over supported catalyst,” Appl. Phys. A, vol. 67, pp, 11-22 (1998). [20]Frederik Neuwahl, Paolo Foggi, Robert G. Brown, “Sub- picosecond and picosecond dynamics in the S1 state of [2,2''-bipyridyl]-3,3''-diol by UV-visibletransient absorption spectroscopy,” Chem. Phys. Lett., vol. 319, pp. 157-163, (2000). [21]M. Endo, S. Iijima, M. S. Dresselhaus, “Carbon Nanotubes,” Elsevier Science, Oxford, ( 1996). [22]T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, “Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes,” Nature, vol. 391, p. 62, (1998). [23]Y. Li, J. Liu, Y. Q. Wang, Z. L. Wang, “Preparation of monodispersed Fe-M0 nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chem. Mater, vol. 13, pp. 1008-1014, (2001). [24]W. E. Alvarez, B. Kitiyanan, A. Borgna, D. E. Resasco, “Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO,” Carbon, vol. 39, pp.547-558, (2001). [25]L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M.Meyyappan, “Multilayered Metal Catalysts for Controlling the Density of Single Walled Carbon Nanotube Growth,” Chem. Phys. Lett., vol. 348, pp.368-374, (2001). [26]Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, “Interlayer spacings in carbon nanotubes,” Phys. Rev. B, vol. 48, pp. 1907, (1993). [27]M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.-H. Kiang, M. S. Dresselhaus, “Stacking Nature of Graphene Layers in Carbon Nanotubes and Nanofibres,” J. Phys. Chem. Solids, vol. 58, pp. 1707-1712, (1997). [28]C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, “Size Effects in Carbon Nanotubes,” Phys. Rev. Lett., vol. 81, pp. 1869-1872, (1998). [29]M. S. Dresselhaus, M. Endo, “Carbon Nanotubes Synthesis, Structure, Properties and Applications,” Springer-Verlag, pp. 11, New York, (2001). [30]H. J. Dal, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-Wall Nanotubes Produced By Metal-Catalyzed Disproportionation of Carbon Monoxide,” Chemical Physics Letters, vol. 260, pp. 471-475, (1996). [31]J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, “Catalytic Growth of Single Wall Carbon Nanotubes from Metal Particles,” Chem. Phys. Lett., vol. 296, pp. 195, (1998). [32]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, vol. 282, pp. 1105-1107, (1998). [33]H. J. Dai, J. Kong, C. W. Zhou, N. Franklin, T. Tombler, A. Cassell, S. S. Fan, and M. Chapline, ” Controlled chemical routes to nanotube architectures, physics, and devices,” J. Phys. Chem. B, vol. 103, pp. 11246, (1999). [34]A. Fonseca, K. Hernadi, P. Piedigrosso, JF Colomer, others, “Synthesis of single and multi-wall nanotubes over supported catalyst,” Appl. Phys. A, vol. 67, pp. 11-22, (1998). [35]A. Kukovecz, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J. B. Nagy, I. Kiricsi, “Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas,” Phys. Chem. Chem. Phys., vol. 2, pp. 3071-3076, (2000). [36]L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X. Qian, S. S. Xie, “Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 644, (1999). [37]V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, “The study of carbon nanotubes produced by catalytic method,” Chem. Phys. Lett., vol. 223, pp. 329, (1994). [38]P. Piedigrosso, Z. Konya, J. F. Colomer, A. Fonseca, G. Van Tendeloo, J. B. Nagy, “Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts,” Phys. Chem. Chem. Phys., Vol. 2, pp. 163, (2000). [39]E. Boellaard, P. K. Debokx, A. Kock, J. W. Geus, ” The formation of filamentous carbon on iron and nickel catalysts. III. Morphology,” J. Catal., vol. 96, pp. 481-490, (1985). [40]H. J. Dai, “Controlling Nanotube Growth,” Phys. World, vol. 13, pp. 43-47, (2000). [41]C. J. Lee, J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett., vol. 77, pp. 3397, (2000). [42]W. Z. Li, J. G. Wen, Y. Tu, Z. F. Ren, “Effect of Gas Pressure on the Growth and Structure of Carbon Nanotubes by Chemical Vapor Deposition,” Appl. Phys. A, vol. 73, pp. 259-264, (2001). [43]R. T. K. Baker, “Catalytic Growth of Carbon Filaments,” Carbon, vol. 27, pp. 315-323, (1989). [44]N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nonofibers,” J. Mater. Res., vol. 8, pp. 3233, (1993). [45]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 90, pp. 5308, (2001). [46]C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. H. Jin, “Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition,” Appl. Phys. Lett., vol. 77, pp. 2767, (2000). [47]J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. I. Cho, K. S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett., vol. 78, pp. 901, (2001). [48]V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl, “Patterned Growth of Individual and Multiple Vertically-Aligned Carbon Nanotubes,” Appl. Phys. Lett., vol. 76, pp. 3555, (2000). [49]M. P. Siegal, D. L. Overmyer, P. P. Provencio, “Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition,” Appl. Phys. Lett., vol. 80, pp. 2171, (2002). [50]R. T. K. Baker, J. R. Alonzo, J. A. Dumesic, D. J. C. Yates, “Effect of the Surface State of Iron on Filamentous Carbon Formation,” J. Catal., vol.77, pp. 74, (1982). [51]Z. P. Huang, J. W. Wu, Z. F. Ren, J. H. Wang, M. P. Siegal, P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition,” Appl. Phys. Lett., vol. 73, pp. 3845, (1998). [52]Saito Y, Nishikubo K, Kawabata K, Matsumoto T., “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge,” Journal of Applied Physics, vol. 80, pp. 3062–3067, (1996). [53]T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, “Purification of nanotubes,” Nature, vol.367, p.519, (1994). [54]T. W. Ebbesen and P. M. Ajayan, “Large scale synthesis of carbon nanotubes,” Nature, vol.358, p.220, (1992). [55]JM Lambert, PM Ajayan, P. Bernier, JM Planeix, V. Brotons, B. Coq and J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes,” Chem. Phys. Lett., vol.226, p.364, (1994). [56]Coilins PG, Avouris P., “Nanotubes of electronics,” Scientific American, pp.38-45, (2000). [57]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D.Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline. Ropes of Metallic Carbon Nanotubes,” Scienc , vol. 273, p.483, (1996). [58]L. Delzeit, B. Chen, AM Cassell, RMD Stevens, C. Nguyen, and M. Meyyappan, “Multilayered Metal Catalysts for Controlling the Density of Single Walled Carbon Nanotube Growth,” Chemical Physics Letters, Vol. 348, pp. 368-374, (2001). [59]J. Kong, HT Soh, A. Cassell, CF Quate, and H. Dai, “Synthesis of. single single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, p. 878, (1998). [60]M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the. synthesis of single-walled carbon nanotubes with high. catalyst productivity,” Chem. Phys. Lett., vol.322, p.321, (2000). [61]M. Ohring, “The Materials Science of Thin Films,” (Acadamic, San Diego, p.422,(1992) [62]K.M. Crosby and R.M. Bradley, “Pattern formation during delamination and buckling of thin films,” Phys. Rev. E 59, R2542,(1999) [63]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, vol. 282, pp. 1105-1107, (1998). [64]Anyuan Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, K. Turner, “Silicon oxide thickness-dependent growth of carbon nanotubes,” APPLIED PHYSICS LETTERS, vol. 84, pp. 109-111,(2004). [65]Yoon-Taek Jang, Jin-Ho Ahn, Yun-Hi Lee, Byeong-Kwon Ju, “Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition,” Chemical Physics Letters, vol. 372, pp. 745-749,(2003). [66]來俊帆,” Study of the growth mechanism of CNTs by thermal CVD,” 中原大學碩士論文, (2004)
|