跳到主要內容

臺灣博碩士論文加值系統

(44.192.67.10) 您好!臺灣時間:2024/11/14 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭博仁
研究生(外文):PO-JEN CHENG
論文名稱:以熱裂解化學氣相沈積法在矽基板上成長奈米碳管之研究
論文名稱(外文):Growth of Carbon Nanotubes on Si Substrates by Thermal Chemical Vapor Deposition
指導教授:林堅楊林堅楊引用關係
指導教授(外文):Jian-Yang Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:123
中文關鍵詞:奈米碳管金屬催化劑掃瞄式電子顯微鏡熱裂解化學氣相沈積法高解析穿透式電子顯微鏡
外文關鍵詞:SEMHRTEMThermal CVDMetal CatalystCarbon nanotubes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文藉由熱蒸鍍機系統及RF真空濺鍍機系統沉積不同之厚度金屬催化劑(鐵、鈷、鎳)薄膜在矽基板及SiO2(400nm)/Si基板上,研究發現催化劑之種類及厚度甚至製成之不同會對以熱裂解化學氣相沈積法所生長之奈米碳管造成不同的影響。藉由高解析穿透式電子顯微鏡(HRTEM)與掃瞄式電子顯微鏡之EDS觀測奈米碳管結構,發現不同厚度之催化層因在高溫時會有收斂現象進而會有不同尺寸的奈米級催化劑顆粒形成,進而影響碳管的成長。在氣體種類和流量方面,發現除了改變含碳氣源的濃度外,搭配的氣體也會間接影響碳管生長的結果,如H2、Ar和N2的搭配。另外催化薄膜的前處理,對碳管的管徑方面會有關鍵性的影響,主要原因還是在於催化劑顆粒的大小。在準備奈米碳管試片中,發現超音波震洗的震盪時間影響分散奈米碳管的程度,也會造成部分催化劑以奈米等級的顆粒沾附在碳管上。
In this work, the thermal evaporation and RF vacuum sputtering were used to deposit metal catalysts (Fe, Co, Ni) on the SiO2/Si substrate. Growth of carbon nanotubes (CNTs) on SiO2/Si substrates via the pyrolysis of methane by thermal CVD has also been studied in this work. Pure silicon and SiO2 (400nm)/Si wafers were used as the substrates for the CNT growth. In all cases CH4 was used as the carbon precursor. The structures of the grown CNTs depend on the distribution and grain size of the metal catalyst and the reactant gas composition. Using the HRTEM and EDS analysis, it is found that the grain size of the metal catalyst will affect the CNT’s structure. The reactant gas composition of H2,, N2 and Ar also affects the growth of the CNTs. Furthermore, the pre-treatments of the catalyst layers have crucial effects to the size of the catalyst nano-particles. Some of the CNT specimens for HRTEM observation have catalyst nano-particles adhered to their walls. This might be caused by the inappropriate period of ultrasonic cleaning time.
頁次
內頁 I
中文摘要 II
英文摘要 III
誌 謝 IV
目 錄 V
表 目 錄 VII
圖 目 錄 VIII



第 一 章 緒論………………………………………………………… 1
1-1 前言………………………………………………………… 1
1-2 研究目的…………………………………………………… 2

第 二 章 文獻回顧………………………………………………………… 3
2-1 奈米碳管發展歷史與組成……………………………………… 3
2-1-1 奈米碳管之發現……………………………………………… 3
2-1-2 奈米碳管之結構……………………………………………… 3
2-2 奈米碳管之生長機制…………………………………………… 5
2-2-1 單壁奈米碳管………………………………………………… 6
2-2-2 多壁奈米碳管………………………………………………… 6
2-2-3 金屬固態催化劑對CNT之影響…………………………… 8
2-3 奈米碳管之合成方法…………………………………………… 10
2-3-1 電弧放電法…………………………………………………… 10
2-3-2 雷射蒸發法…………………………………………………… 10
2-3-3 化學氣相沈積法……………………………………………… 10

第 三 章 第一章 研究方法與實驗步驟……………………………….. 12
3-1 摘要…………………………………………………………….. 12
3-2 實驗裝置與步驟……………………………………………….. 13
3-2-1 Thermal CVD系統………………………………………….. 13
3-2-2 催化劑之製備……………………………….. .. ……. …… 13
3-3 奈米碳管之生長……………….. ……. ………………….. … 15
3-4 奈米碳管之分析設備…………………………………..…… 16
3-4-1 掃瞄式電子顯微鏡(SEM)………………………………….. 16
3-4-2 穿透式電子顯微鏡(HRTEM)……………….. ……. …… 16
第 四 章 結果與討論………………………………………………..…… 18
4-1 催化劑之表面型態分析………………………………..……… 18
4-2 奈米碳管之型態觀察及結構分析…………………………… 20
4-2-1 催化劑對奈米碳管成長之影響…………………………… 22
4-2-2 搭配氣體對奈米碳管成長之影響………………………… 23

第 五 章 結論………………………………………………..………… 26

參考文獻 ……………………………………………………….……. 28
[1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature(London), vol.354, p.56, (1991).
[2]Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE, “C60: Buckyminsterfullerene,” Nature, vol. 318, pp.162-163, (1985).
[3]W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “Theoretical study of a hypothetical metallic phase of carbon,” Nature, vol. 347, p.354, (1990).
[4]A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, ” Theory of carbon nanotube growth,” Phys. Rev. B, vol.52, p.14850, (1995).
[5]T. W. Ebbesen, “Carbon nanotubes - Preparation and properties,” CRC press, Inc., (1997).
[6]www.the-scientist.com/yr1997/ jan/index_970106.htm.
[7]JW Mintmire and CT White,”First-principles band structures of armchair. Nanotubes,” Applied Physics A Materials Science & Processing, vol.67, pp65-69, (1998).
[8]S. Iijima and T. Ichihashi, “Single shell carbon nanotubes of one nanometer diameter,” Nature, vol.363, pp603-605,(1993).
[9]DS Bethune, CH Kiang, MS deVries, G. Gorman, R. Saroy, J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbon. nanotubes with single-atomic-layerwalls,” Nature, vol.363, p605, (1993).
[10]M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, “Physics of Carbon nanotubes,” vol.33, p883, (1995).
[11]Bonard JM, Kind H, Stöckli T, Nilsson LO, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, vol. 45, pp. 893-914, ( 2001)
[12]J. C. Charlier and J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes,” Applied Physics A:Materials Science &Processing, vol.67, p.79, (1998).
[13]MS Dresselhaus, G. Dresselhaus, PC Eklund, and R. Saito, “Carbon nanotubes,” Physics World 11, vol.33, p.38, (1998).
[14]Bonard JM, Kind H, Stöckli T, Nilsson LO, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, vol. 45, pp. 893-914, ( 2001)
[15]R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal., vol. 26, pp. 51, (1972).
[16]Dingyong Zhong, Shuang Liu, Guangyu Zhang, E. G. Wang, “Large-scale well aligned carbon nitride nanotube films: low temperature growth and electron field emission,” Journal of Applied Physics, Vol. 89, pp. 5939-5943, (2001).
[17]R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite, “Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene,” J. Catal., vol. 30, pp. 86, (1973).
[18]G. G. Tibbetts, “Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes,” Appl. Phys. Lett., vol. 42, pp. 666–668, (1983).
[19]A. Fonseca, K. Hernadi, P. Piedigrosso, JF Colomer, others, “Synthesis of single and multi-wall nanotubes over supported catalyst,” Appl. Phys. A, vol. 67, pp, 11-22 (1998).
[20]Frederik Neuwahl, Paolo Foggi, Robert G. Brown, “Sub- picosecond and picosecond dynamics in the S1 state of [2,2''-bipyridyl]-3,3''-diol by UV-visibletransient absorption spectroscopy,” Chem. Phys. Lett., vol. 319, pp. 157-163, (2000).
[21]M. Endo, S. Iijima, M. S. Dresselhaus, “Carbon Nanotubes,” Elsevier Science, Oxford, ( 1996).
[22]T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, “Atomic
Structure and Electronic Properties of Single-walled Carbon
Nanotubes,” Nature, vol. 391, p. 62, (1998).
[23]Y. Li, J. Liu, Y. Q. Wang, Z. L. Wang, “Preparation of monodispersed Fe-M0 nanoparticles as the catalyst for CVD synthesis of carbon nanotubes,” Chem. Mater, vol. 13, pp. 1008-1014, (2001).
[24]W. E. Alvarez, B. Kitiyanan, A. Borgna, D. E. Resasco, “Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO,” Carbon, vol. 39, pp.547-558, (2001).
[25]L. Delzeit, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M.Meyyappan, “Multilayered Metal Catalysts for Controlling the Density of Single Walled Carbon Nanotube Growth,” Chem. Phys. Lett., vol. 348, pp.368-374, (2001).
[26]Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, “Interlayer spacings in carbon nanotubes,” Phys. Rev. B, vol. 48, pp. 1907, (1993).
[27]M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C.-H. Kiang, M. S. Dresselhaus, “Stacking Nature of Graphene Layers in Carbon Nanotubes and Nanofibres,” J. Phys. Chem. Solids, vol. 58, pp. 1707-1712, (1997).
[28]C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, “Size Effects in Carbon Nanotubes,” Phys. Rev. Lett., vol. 81, pp. 1869-1872, (1998).
[29]M. S. Dresselhaus, M. Endo, “Carbon Nanotubes Synthesis, Structure, Properties and Applications,” Springer-Verlag, pp. 11, New York, (2001).
[30]H. J. Dal, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Single-Wall Nanotubes Produced By Metal-Catalyzed Disproportionation of Carbon Monoxide,” Chemical Physics Letters, vol. 260, pp. 471-475, (1996).
[31]J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G. Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, “Catalytic Growth of Single Wall Carbon Nanotubes from Metal Particles,” Chem. Phys. Lett., vol. 296, pp. 195, (1998).
[32]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, vol. 282, pp. 1105-1107, (1998).
[33]H. J. Dai, J. Kong, C. W. Zhou, N. Franklin, T. Tombler, A. Cassell, S. S. Fan, and M. Chapline, ” Controlled chemical routes to nanotube architectures, physics, and devices,” J. Phys. Chem. B, vol. 103, pp. 11246, (1999).
[34]A. Fonseca, K. Hernadi, P. Piedigrosso, JF Colomer, others, “Synthesis of single and multi-wall nanotubes over supported catalyst,” Appl. Phys. A, vol. 67, pp. 11-22, (1998).
[35]A. Kukovecz, Z. Konya, N. Nagaraju, I. Willems, A. Tamasi, A. Fonseca, J. B. Nagy, I. Kiricsi, “Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas,” Phys. Chem. Chem. Phys., vol. 2, pp. 3071-3076, (2000).
[36]L. F. Sun, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang, L. X. Qian, S. S. Xie, “Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 644, (1999).
[37]V. Ivanov, J. B. Nagy, P. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, J. Vanlanduyt, “The study of carbon nanotubes produced by catalytic method,” Chem. Phys. Lett., vol. 223, pp. 329, (1994).
[38]P. Piedigrosso, Z. Konya, J. F. Colomer, A. Fonseca, G. Van Tendeloo, J. B. Nagy, “Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts,” Phys. Chem. Chem. Phys., Vol. 2, pp. 163, (2000).
[39]E. Boellaard, P. K. Debokx, A. Kock, J. W. Geus, ” The formation of filamentous carbon on iron and nickel catalysts. III. Morphology,” J. Catal., vol. 96, pp. 481-490, (1985).
[40]H. J. Dai, “Controlling Nanotube Growth,” Phys. World, vol. 13, pp. 43-47, (2000).
[41]C. J. Lee, J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett., vol. 77, pp. 3397, (2000).
[42]W. Z. Li, J. G. Wen, Y. Tu, Z. F. Ren, “Effect of Gas Pressure on the Growth and Structure of Carbon Nanotubes by Chemical Vapor Deposition,” Appl. Phys. A, vol. 73, pp. 259-264, (2001).
[43]R. T. K. Baker, “Catalytic Growth of Carbon Filaments,” Carbon, vol. 27, pp. 315-323, (1989).
[44]N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nonofibers,” J. Mater. Res., vol. 8, pp. 3233, (1993).
[45]M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., vol. 90, pp. 5308, (2001).
[46]C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. H. Jin, “Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition,” Appl. Phys. Lett., vol. 77, pp. 2767, (2000).
[47]J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. I. Cho, K. S. Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,” Appl. Phys. Lett., vol. 78, pp. 901, (2001).
[48]V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl, “Patterned Growth of Individual and Multiple Vertically-Aligned Carbon Nanotubes,” Appl. Phys. Lett., vol. 76, pp. 3555, (2000).
[49]M. P. Siegal, D. L. Overmyer, P. P. Provencio, “Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition,” Appl. Phys. Lett., vol. 80, pp. 2171, (2002).
[50]R. T. K. Baker, J. R. Alonzo, J. A. Dumesic, D. J. C. Yates, “Effect of the Surface State of Iron on Filamentous Carbon Formation,” J. Catal., vol.77, pp. 74, (1982).
[51]Z. P. Huang, J. W. Wu, Z. F. Ren, J. H. Wang, M. P. Siegal, P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition,” Appl. Phys. Lett., vol. 73, pp. 3845, (1998).
[52]Saito Y, Nishikubo K, Kawabata K, Matsumoto T., “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge,” Journal of Applied Physics, vol. 80, pp. 3062–3067, (1996).
[53]T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, “Purification of nanotubes,” Nature, vol.367, p.519, (1994).
[54]T. W. Ebbesen and P. M. Ajayan, “Large scale synthesis of carbon nanotubes,” Nature, vol.358, p.220, (1992).
[55]JM Lambert, PM Ajayan, P. Bernier, JM Planeix, V. Brotons, B. Coq and J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes,” Chem. Phys. Lett., vol.226, p.364, (1994).
[56]Coilins PG, Avouris P., “Nanotubes of electronics,” Scientific American, pp.38-45, (2000).
[57]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D.Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline. Ropes of Metallic Carbon Nanotubes,” Scienc , vol. 273, p.483, (1996).
[58]L. Delzeit, B. Chen, AM Cassell, RMD Stevens, C. Nguyen, and M. Meyyappan, “Multilayered Metal Catalysts for Controlling the Density of Single Walled Carbon Nanotube Growth,” Chemical Physics Letters, Vol. 348, pp. 368-374, (2001).
[59]J. Kong, HT Soh, A. Cassell, CF Quate, and H. Dai, “Synthesis of. single single-walled carbon nanotubes on patterned silicon wafers,” Nature, vol. 395, p. 878, (1998).
[60]M. Su, B. Zheng, and J. Liu, “A scalable CVD method for the. synthesis of single-walled carbon nanotubes with high. catalyst productivity,” Chem. Phys. Lett., vol.322, p.321, (2000).
[61]M. Ohring, “The Materials Science of Thin Films,” (Acadamic, San Diego, p.422,(1992)
[62]K.M. Crosby and R.M. Bradley, “Pattern formation during delamination and buckling of thin films,” Phys. Rev. E 59, R2542,(1999)
[63]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, vol. 282, pp. 1105-1107, (1998).
[64]Anyuan Cao, P. M. Ajayan, G. Ramanath, R. Baskaran, K. Turner, “Silicon oxide thickness-dependent growth of carbon nanotubes,” APPLIED PHYSICS LETTERS, vol. 84, pp. 109-111,(2004).
[65]Yoon-Taek Jang, Jin-Ho Ahn, Yun-Hi Lee, Byeong-Kwon Ju, “Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition,” Chemical Physics Letters, vol. 372, pp. 745-749,(2003).
[66]來俊帆,” Study of the growth mechanism of CNTs by thermal CVD,” 中原大學碩士論文, (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top