跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/24 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝立庭
研究生(外文):Lee-Ting Hsieh
論文名稱:全方位運動機器人之最佳控制
論文名稱(外文):Optimal control of an omni-directional robot
指導教授:吳佳儒吳佳儒引用關係
指導教授(外文):Chia-Ju Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:50
中文關鍵詞:全方位運動機器人最佳時間控制非線性規劃
外文關鍵詞:time-optimal controlOmni-directional robots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:3
本篇論文的主要目的是研究全方位行動機器人於點對點間的最佳時間控制問題。論文中使用動力學及運動學兩種方法,並以基因演算法和非線性規劃方法應用於全方位運動機器人點對點間的最佳時間控制。本篇論文提出了一個新穎的方法來解決三輪式全方位運動機器人點對點間的最佳時間控制問題。最佳化期間,控制步數的初始值是固定的,而取樣週期則是待決定的變數,主要的目的是將取樣週期最小化到某一個預定值之下,最佳化過程首先是將點對點間的最佳時間控制問題轉換成一個非線性規劃問題,但是因為全方位運動機器人是一個非線性的系統,因此要找到一組初始可行解並非那麼容易,也因此我們有系統的使用數值方法和基因演算法來求出初始可行解,初始可行解求出後再以非線性規劃方法來求得最佳時間解,而由於可以求出眾多的初始可行解,因此最佳化的過程可以由許多不同的點來出發。論文內將以模擬結果來證明所提方法的可行性。
The main goal of this study is to investigate the time-optimal control problem of an omni-directional mobile robot between two configurations. In the proposed method, the time-optimal control problem is formulated and solved as a constrained nonlinear programming (NLP) one. During the optimization process, the count of control steps is fixed initially and the sampling period is treated as a variable to be determined. The goal is to minimize the sampling period such that it is below a specific minimum value, which is set in advance considering the accuracy of discretization. To generate initial feasible solutions of the NLP problem, a systematic approach is also proposed. Since different initial feasible solutions can be generated, the optimization process of the NLP problem can be started from many different points to find the optimal solution. To show the feasibility of the proposed method, simulation results are included for illustration.
中文摘要 --------------------------------------------------------------------------- I
英文摘要 --------------------------------------------------------------------------- II
誌謝 --------------------------------------------------------------------------- III
目錄 --------------------------------------------------------------------------- IV
表目錄 --------------------------------------------------------------------------- V
圖目錄 --------------------------------------------------------------------------- V
第一章 緒論--------------------------------------------------------------------- 1
1.1 前言--------------------------------------------------------------------- 1
1.2 文獻回顧--------------------------------------------------------------- 2
1.3 研究動機與目的------------------------------------------------------ 3
第二章 基因演算法------------------------------------------------------------ 5
2.1 什麼是基因演算法--------------------------------------------------- 5
2.2 為什麼需要基因演算法--------------------------------------------- 5
2.3 基因演算法簡介------------------------------------------------------ 6
2.4 遺傳法則--------------------------------------------------------------- 10
2.5 基因演算法的應用--------------------------------------------------- 10
第三章 動力學方程式運用於點對點間最佳時間控制------------------ 11
3.1 全方位運動機器人架構--------------------------------------------- 11
3.2 全方位運動機器人的動態方程式--------------------------------- 13
3.3 點對點間得最佳時間控制問題------------------------------------ 15
3.4 初始可行解------------------------------------------------------------ 20
3.5 控制程序--------------------------------------------------------------- 22
3.6 模擬結果--------------------------------------------------------------- 23
3.7 討論--------------------------------------------------------------------- 24
第四章 運動學方程式運用於點對點間最佳時間控制------------------ 29
4.1 前言--------------------------------------------------------------------- 29
4.2 全方位運動機器人運動學方程式--------------------------------- 29
4.3 點對點間得最佳時間控制問題------------------------------------ 31
4.4 初始可行解------------------------------------------------------------ 35
4.5 控制程序--------------------------------------------------------------- 37
4.6 模擬結果--------------------------------------------------------------- 37
4.7 討論--------------------------------------------------------------------- 38
第五章 結論與未來展望------------------------------------------------------ 44
5.1 結論--------------------------------------------------------------------- 44
5.2 未來展望--------------------------------------------------------------- 45
參考文獻 --------------------------------------------------------------------------- 46
自 傳 --------------------------------------------------------------------------- 50
[1]Schraft, R.D. and Schmierer, G. Service Robots, A K Peters, Ltd., 2000.
[2]Pin, F.G. and Killough, S.M. A new family of omnidirectional and holonomic wheeled platforms for mobile robots. IEEE Trans. on Robotics and Automation, 1994,vol. 10, pp. 480-489.
[3]http://www.robocup.org/
[4]Betourne, A. and Campion, G. Kinematic modeling of a class of omnidirectional mobile robots. Proc. of the IEEE International Conference on Robotics and Automation, 1996, pp. 3631-3636.
[5]Kim, D.S., Lee, H.C., and Kwon, W.H. Geometric kinematics modeling of omni-directional autonomous mobile robot and its applications. Proc. of the IEEE International Conference on Robotics and Automation, 2000, pp. 2033-2038.
[6]Leow, Y.P., Low, K.H., and Loh, W.K. Kinematic modeling and analysis of mobile robots with omni-directional wheels. Proc. of the Seventh International Conference on Control, automation, Robotics and Vision, 2002, pp. 820-825.
[7]Jung, M.J., Shim, H.S., Kim, H.S., and Kim, J.H. Omni-directional mobile base OK-II. Proc. of the IEEE International Conference on Robotics and Automation, 2000, pp. 3449-3454.
[8]Kalmar-Nagy, T., Ganguly, P., and D’Andrea, R. Real-time trajectory generation for omnidirectional vehicles. Proc. of the American Control Conference, 2002, pp. 286-291.
[9]Williams, R.L., Carer, B.E., Gallina, P., and Rosati, G. Dynamic Model with slip for wheeled omnidirectional robots. IEEE Trans. on Robotics and Automation, 2002, vol. 18, pp. 285-293.
[10]Chen, P., Mitsutake, S., Isoda, T., and Shi, T. Omni-directional robot and adaptive control method for off-road running. IEEE Trans. on Robotics and Automation, 2002, vol. 18, pp. 251-256.
[11]Chen, P., Koyama, S., Mitsutake, S., and Isoda, T. Automatic running planning for omni-directional robot using genetic programming. Proc. of the IEEE International Symposium on Intelligent Control, 2002, pp. 485-489.
[12]Liu, Y., Wu, X., Zhu, J.J., and Lew, J. Omni-directional mobile robot controller design by trajectory linearization. Proc. of the American Control Conference, 2003, pp. 3423-3428.
[13]Watanabe, K. Control of an omnidirectional mobile robot. Proc. of the Second International Conference on Knowledge-Based Intelligent Electronic Systems, 1998, pp. 51-60.
[14]Watanabe, K., Shiraishi, Y., and Tzaffestas, S.G. Feedback control of an omnidirectional autonomous platform for mobile serve robots. Journal of Intelligent and Robotic Systems, 1998, vol. 20, pp. 315-330.
[15]Soueres, P. and Laumond, J.P. Shortest paths synthesis for a car-like robot. IEEE Trans. on Automatic Control, 1996, vol. 41, pp. 672-688.
[16]Wu, W., Chen, H., and Woo, P.Y. Optimal motion planning for a wheeled mobile robot. Proc. of the IEEE International Conference on Robotics and Automation, 1999, pp. 41-46.
[17]Zheng, Y. and Moore, P. The design of time-optimal control for two-wheel driven carts tracking a moving target. Proc. of the IEEE International Conference on Decision and Control, 1995, pp. 3831–3836.
[18]Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F. The Mathematical Theory of Optimal Processes, Gordon and Beach, New York, 1986.
[19]Chung, T.S. and Wu, C.J. A computationally efficient numerical algorithm for the minimum-time control problem of continuous systems. Automatica, 1992, vol. 28, pp. 841–847.
[20]M. D. Canon, C. D. Cullum, and E. Polak, Theory of optimal control and
mathematical programming , Mc-Graw-Hill, New York, 1970.
[21]M. Gen and R. Cheng, Genetic Algorithm and Engineering Design, Wiley, New York, 1997.
[22]Lewis, F.L. Optimal Control, Wiley, New York, 1986.
[23]Luenberger, D.G. Linear and Nonlinear Programming, Addison-Wesley, Reading, 1973.
[24]黃聖峰,基因演算法於最短時間控制問題之應用,雲林科技大學碩士論文,2001。
[25]周鵬程,遺傳演算法原理與應用,全華科技股份圖書股份有限公司,2001。
[26]http://www.solab.iecs.fcu.edu.tw/course/other/20000305_iecs.pdf。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top