跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖啟宏
研究生(外文):Chi-Hung Liao
論文名稱:多階換流器應用於配電系統整合型電力品質控制技術之研究
論文名稱(外文):Research of Multilevel Inverter in Unified Power Quality Controller For Distribution Power System
指導教授:林伯仁
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:143
中文關鍵詞:電力品質諧波電壓失真多階換流器整合型電力品質控制技術磁滯電流控制脈波寬度調變
外文關鍵詞:Hysteresis Current ControlUnified Power Quality Controller (UPQC)HarmonicsMulti-level InverterVoltage DistortionPower QualitySinusoidal Pulse Width Modulation (SPWM).
相關次數:
  • 被引用被引用:2
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電力是維持現代經濟發展與社會運作的基礎,良好的電力品質在近年來愈受重視,由於電力電子技術的進步以其為架構的非線性負載裝置大量的使用,因此產生大量的諧波電流注入電力系統;而輸配電過程中的不確定因素,產生電力中斷,電壓驟降等電壓失真問題使得供電品質不良;現今精密的儀器及用電設備對電力品質的要求甚高,所以必須要對電力品質之提升提出解決之道。

本文提出串接全橋式多階換流器之整合型電力品質控制技術來改善已受污染的電力系統品質;其中整合型電力品質控制技術可同時改善電壓與電流的擾動;而串接全橋式多階換流器之架構具有低元件耐壓,輸出低電壓諧波,功率易往高瓦數推升,結構模組化之優點。在控制方面,以磁滯電流控制及正弦脈波寬度調變技術作為開關訊號調變的機制。

最後以 Matlab / Simulink 軟體程式來模擬驗證所提出之架構及控制方法,以印證本論文所提出之系統性能。
In recently years, the power quality required in industry is getting higher and higher, especially in the high-tech industry. The power electronic devices were widely used in the industry products. The diode rectifier used as a front stage of power converter will generate serious current harmonics into the distribution or transmission system. These harmonics will result in the voltage distortion in the transmission line. Therefore, it is an important issue to increase the power quality and to insure the system stability.
A unified power quality controller (UPQC) based on a cascaded multi-level inverter was proposed in this thesis. It can effectively improve the stability of the voltage and current. Multilevel inverter can use low voltage devices to implement high or medium voltage applications. The more voltage levels are generated on the inverter and the more voltage harmonics are reduced at the inverter output side. The control scheme is based on the sinusoidal pulse-width modulation (SPWM) schemes and the hysteresis current control. To improve the power quality.
Finally the simulation results based on Matlab/Simulink software package are provided to verify the performance of the proposed control schemes.
中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------- iv
表目錄 --------------------------------------------------------------------------- vii
圖目錄 --------------------------------------------------------------------------- viii
符號說明 --------------------------------------------------------------------------- xiii
一、 緒論--------------------------------------------------------------------- 1
1.1 研究背景與動機---------------------------------------------------- 1
1.2 論文綱要-------------------------------------------------------------- 4
二、 電力品質干擾因素--------------------------------------------------- 5
2.1 前言--------------------------------------------------------------------- 5
2.2 諧波--------------------------------------------------------------------- 7
2.2.1 諧波含量的表示----------------------------------------------------- 8
2.2.2 諧波的成因及對電力系統的影響------------------------------ 9
2.2.3 諧波管制標準-------------------------------------------------------- 12
2.3 電壓驟降與電壓驟------------------------------------------------- 14
2.4 欠電壓及過電壓---------------------------------------------------- 18
2.5 電力中斷-------------------------------------------------------------- 18
2.6 三相電壓不平衡---------------------------------------------------- 19
2.6.1 三相電壓不平衡的成因及衡量--------------------------------- 20
2.6.2 三相電壓不平衡的影響及改善--------------------------------- 21
2.7 電壓閃爍-------------------------------------------------------------- 21
2.8 暫態突波-------------------------------------------------------------- 22
2.9 功率因數-------------------------------------------------------------- 23
2.10 以被動元件為基礎之電力品質改善技術-------------------- 24
三、 主動式電力濾波器-------------------------------------------------- 29
3.1 前言--------------------------------------------------------------------- 29
3.2 並聯式主動電力濾波器------------------------------------------- 30
3.3 串聯式主動電力濾波器------------------------------------------- 32
3.4 串並聯式主動電力濾波器--------------------------------------- 35
3.5 混合式電力濾波器------------------------------------------------- 36
3.5.1 混合式電力濾波器架構一:並聯式主動電力濾波器與被動濾波器並聯----------------------------------------------------
36
3.5.2 混合式電力濾波器架構二:串聯式主動電力濾波器與被動濾波器並聯----------------------------------------------------
37
3.5.3 混合式電力濾波器架構三:並聯被動式濾波器串聯主動式電力濾波器----------------------------------------------------
38
3.6 彈性交流輸電系統------------------------------------------------- 38
四、 多階換流器------------------------------------------------------------ 42
4.1 前言--------------------------------------------------------------------- 42
4.2 階數的定義----------------------------------------------------------- 43
4.3 多階換流器之架構------------------------------------------------- 45
4.4 PWM 脈波寬度調變---------------------------------------------- 51
4.5 磁滯電流控制技術------------------------------------------------- 56
4.6 串接全橋式多階換流器操作模式分析----------------------- 59
五、 電路設計--------------------------------------------------------------- 72
5.1 前言--------------------------------------------------------------------- 72
5.2 串接全橋式多階換流器之整合型電力品質控制技術電路分析-----------------------------------------------------------------
72
5.3 控制器之建立-------------------------------------------------------- 77
六、 模擬結果--------------------------------------------------------------- 80
6.1 前言 80
6.2 串接全橋式多階換流器之整合型電力品質控制器於線性負載之模擬結果-------------------------------------------------
80
6.2.1 正常電壓與電感性平衡負載------------------------------------ 81
6.2.2 不平衡電壓與平衡負載--------------------------------------------- 84
6.2.3 電壓驟降與不平衡負載--------------------------------------------- 88
6.2.4 過電壓與不平衡負載---------------------------------------------- 92
6.2.5 諧波電壓與不平衡負載--------------------------------------------- 96
6.2.6 電源不平衡諧波電壓與不平衡負載-------------------------- 100
6.2.7 電壓閃爍與不平衡負載------------------------------------------- 104
6.3 串接全橋式多階換流器之整合型電力品質控制器於非線性負載模擬結果-------------------------------------------------
108
6.3.1 正常電壓與非線性平衡負載------------------------------------ 109
6.3.2 不平衡電壓與非線性不平衡負載------------------------------ 112
6.3.3 電壓驟降與非線性不平衡負載--------------------------------- 116
6.3.4 過電壓與非線性不平衡負載------------------------------------ 120
6.3.5 諧波電壓與非線性不平衡負載--------------------------------- 124
6.3.6 電源不平衡諧波電壓與不平衡負載-------------------------- 128
6.3.7 電壓閃爍與非線性不平衡負載--------------------------------- 132
七、 結論與未來展望------------------------------------------------------ 137
參考文獻 --------------------------------------------------------------------------- 138
自傳 --------------------------------------------------------------------------- 143
[1] 江榮城,「電力品質實務(一)」,全華科技圖書,2000年。
[2] 王耀諄,「電力品質」,高立圖書,2005年。
[3] Roger C. Dugan, Surya Santoso, “Electrical Power System Quality”, 2nd Ed.,
McGraw-Hill, New York, 2003.
[4] Barry W. Kennedy, “Power Quality Primer”, McGraw-Hill, New York,2000.
[5] IEEE Standards Board, “IEEE Recommended Practice for the Monitoring Electrical Power Quality”, IEEE Std. 1159.3-1995,IEEE, New York,2004.
[6] IEEE Std.519-1992, “IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power Systems”, New York, 1993.
[7]江榮城、郭宗益,「電力諧波管制標準研討與執行細則研擬」,台電工程月刊,第613期,pp.31-51,八月,1999。
[8] IEEE Std.446, “IEEE Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications”, New York, 1995.
[9] “ITI (CBEMA) Curve Application Note”, Published by: Information Technology Industry Council (ITI) 1250 Eye Street NW Suite 20 Washington DC 2000.
[10] SEMI F47-0200, “Specification for Semiconductor Processing Equipment Voltage Sag Immunity”, Semiconductor Equipment & Material International, Mountain View, CA, USA, 2000.
[11] Emadi Ali., Nasiri Abdolhosein, Bekiarov Stoyan B. Uninterruptible Power Supplies and Active Filters, CRC PRESS, Boca Raton.
[12] Singh B., Al-Haddad K., Chandra A., “A Review of Active Filters for Power Quality Improvement”, Industrial Electronics, IEEE Transactions on Vol. 46, pp. 960 – 971, 1999.
[13] M. El-Habrouk, M.K. Darwish, P. Mehta, “A Survey of Active Filters and Reactive Power Compensation Techniques”, IEE Conference Pub. l., No. 475, pp. 7-12, 2000.
[14]M.E. Habrouk, “Active Power Filters: A Review”, IEE Proc.-Electr. Power Appl., Vol. 147, pp.403-413, 2000.
[15] G.-H. Choe, M.-H. Park, “A New Injection Method for AC Harmonic Elimination by Active Power Filter”, IEEE Transactions on Industrial Electronics, Vol. 35, pp. 141 -147, 1988.
[16] M.-X. Wang et al., “Performance of an Active Filter Using PWM Current Source Inverter”, Fifth European Conference on Power Electronics and Applications, Vol. 8, pp. 218 -223, 1993.
[17] Z.P. Fang, “Application Issues of Active Power Filters”, IEEE Industry Applications Magazine, Vol. 4, pp. 21-30, 1998.
[18] W.M. Grady et al., “Survey of Active Power Line Conditioning Methodologies”, IEEE Transactions on Power Delivery, Vol. 5, pp. 1536 -1542, 1990.
[19] Chi-Jen Huang, Shyh-Jier Huang, Fu-Sheng Pai, “Design of Dynamic Voltage Restorer With Disturbance-Filtering Enhancement”, IEEE Transactions on Power Electronics, Vol. 18, pp. 1202-1210, 2003.
[20] Chris Fitzer, Mike Barnes, Peter Green, “Voltage Sag Detection Technique for a Dynamic Voltage Restorer”, 2004, IEEE Transactions on Industry Applications, Vol. 40, pp.203-212, 2004.
[21] L. Li, D. Czarkowski, Y. Liu, P. Pillay, “Multilevel Selective Harmonics Elimination PWM Technique in Series-connected Voltage Inverters”, IEEE Transactions on Industry Applications, Vol. 36, pp.160-170, 2000.
[22] Arindam Ghosh, Erard Ledwich, “Compensation of Distribution System Voltage Using DVR”, IEEE Transactions on Power Delivery, Vol. 17, pp.1030-1035, 2002.
[23] Bor-Ren Lin, Tsung-Liang Hung, Bor-Ren Yang, “Analysis and Operation of Hybrid Active Filter for Harmonic Elimination”, Power Conversion Conference. Vol. 2, pp. 800 – 805, 2002.
[24] Fujita H., Yamasaki T., Akagi, H., “A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems”, PESC Record. 29th Annual IEEE, Vol. 1, pp. 209 – 216, 1998.
[25] Inzunza R., Akagi H., “A 6.6-kV Transformerless Shunt Hybrid Active Filter for Installation on a Power Distribution System”, Power Electronics, IEEE Transactions on Vol. 20, Issue 4, pp. 893 – 900, July 2005.
[26] Fujita H., Akagi H., “The Unified Power Quality Conditioner: The Integration of Series and Shunt-Active Filters”, Power Electronics, IEEE Transactions on Vol. 13, Issue 2, pp. 315 – 322, March 1998.
[27] Gu Jianjun, Xu Dianguo, Liu Hankui, Gong Maozhong ,“Unified Power Quality Conditioner (UPQC): The Principle, Control and Application”, Power Conversion Conference, Proceedings of the Vol.1, pp. 80 – 85, 2002.
[28] Pengcheng Zhu, Xun Li, Yong Kang, Jian Chen, “A Novel Control Scheme in 2-phase Unified Power Quality Conditioner”, Industrial Electronics Society, IECON ''03. The 29th Annual Conference of the IEEE Vol. 2, pp.1617 – 1622 , 2003.
[29] Monteiro L.F.C., Aredes M., Moor Neto J.A., “A Control Strategy for Unified Power Quality Conditioner”, Industrial Electronics, ISIE ''03. IEEE International Symposium on Vol. 1, pp. 391 – 396, 2003.
[30] Nasiri A., Emadi, A., “Different Topologies for Single-phase Unified Power Quality Conditioners”, Industry Applications Conference, 38th IAS Annual Meeting. Conference Record of the Vol. 2, pp. 976 – 981, 2003.
[31] Theodore R. Bosela, “Introduction to Electrical Power System Technology”, Prentice-Hill, New Jersey, 1997.
[32] H. Sasaki, T. Machida, “A New Method to Eliminate AC Harmonic Currents by Magnetic Flux Compensation-consideration on Basic Design”, IEEE Transactions on Power Apparatus and Systems, Vol. 90, No. 5, 1971.
[33] L. Gyugyi, E. C. Strycula, “Active Power Filters”, IEEE/IAS Conference Proceeding, pp. 529, 1976.
[34] Laszlo Guygui, “ Converter-based FACTS Technology: Electric Power Transmission in the 21st Century ”, IPEC , vol. 1, Tokyo, 15–26, 2000.
[35] Yong Hua Song , Allan T Johns, “Flexible AC Transmission Systems”, Published by: The Institution of Electrical Engineers, London, United Kingdom, 1999.
[36] Narain G.. Hingorani, Lazlo Gyugyi , “Understanding FACTS : Concepts and Technology of Flexible AC Transmission Systems”, Published by: The Institute of Electrical and Electronics Engineers, Inc. New York, 2000.
[37] S. Herbert, “State of the Art and Future Trends in High Power Electronics” IPEC-Tokyo, pp. 4-14, 2000.
[38] A-CH. Rufer, “An Aid in Teaching of Multilevel Inverters for High Power Applications”, IEEE PESC Rec., pp.347-352, 1995.
[39] Nam S. Choi, Jung G. Cho, Gyu H. Cho,“A General Circuit Topology of Multilevel Inverter”, IEEE PESC Rec., pp.96-103, 1991.
[40] E. R. Ribeiro, I. Barbi, “A Series Active Power Filter for Harmonic Voltage Suppression”, Telecommunications Energy Conference, pp.514-519, 2001.
[41] Jih-Shen Lai, Fang Zheng Peng, “Multilevel Converters: A New Breed of Power Converters”, IEEE Transactions on Industry Applications, Vol.32, pp.509-517, 1996.
[42] C. Hochgraf, R. Lasserter, D. Divan, T. A. Lipo, “Comparison of
Multilevel Inverters for Static Var Compensation”, IEEE-IAS in Conference Rec., pp.921-928, 1994.
[43] J. S. Lai, F. Z. Peng, “Multilevel Converters – a New Breed of Power Converters”, IEEE Transactions on Industry Applications, Vol.32, no.3, pp.509-517, 1996.
[44] Leon M. Tolbert, Fang Z. Peng, Thomas G. Habetler, “Multilevel PWM Methods at Low Modulation Indices”, IEEE Trans. on Power Electronics, Vol.15, pp.719-725, 2000.
[45] L. M. Tolbert, F. Z. Peng, T. G. Habetler, “Multilevel Converters for Large Electric Drives”, IEEE Transactions on Industry Applications, Vol.35, pp.36-44, 1999.
[46] Li Li, Dariusz Czarkowski, Yaguang Liu, Pragasen Pillay, “Multilevel Selective Harmonic Elimination PWM Technique in Series-connected Voltage Inverters”, IEEE Transactions on Industry Applications, Vol.36, pp.160-170, 2000.
[47] M. D. Manjrekar, T. A. Lipo, “A Hybrid Multilevel Inverter Topology for Drive Applications”, IEEE APEC, pp.523-529, 1998.
[48] Yi Wang, Heming Li, Xinchun Shi, Boqiang Xu, “A Novel Carrier-based PWM Strategy for Hybrid Multilevel Inverters”, 35th Annual IEEE power Electronics Specialists Conference, pp.4233-4237, 2004.
[49] C. C. Chan, Zheng Ming Zhao, C. Qian, and S. Meng, “Comparisons of PWM and One-cycle Control for Power Amplifier With Multilevel Converter”, IEEE Transactions on Industrial Electronics, Vol.49, pp. 1342-1344, 2002.
[50] Madhav D. Manjrekar, Peter K.Steimer, Thomas A. Lipo, “Hybrid Multilevel Power Conversion System: A Competitive Solution for High-Power Applications”, IEEE Transactions on Industry Applications.Vol.36, pp.834-841, 2000.
[51] 江炫樟編譯,「電力電子學」,三版;全華科技圖書,2003年
[52] Bor-Ren Lin, Yuan-Po Chien and Hsin-Hung Lu, “Multilevel Inverter with Series Connection of H-Bridge Cells”, IEEE international Conference on Power Electronics and Drive Systems, Hong Kong, PEDS, July, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top