跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪志德
研究生(外文):Jhih-De Hong
論文名稱:數位影像關係法於應變量測之參數探討與薄膜變形量測
論文名稱(外文):A Study of Parameter Tuning for the Deformation Measurement of Thin Film by Using Digital Image Correlation Method
指導教授:黃順發黃順發引用關係
指導教授(外文):Shun-Fa Hwang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:數位影像關係法基因演算法應變量測
外文關鍵詞:digital image correlationstrain measuringgenetic algorithm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
數位影像關係法(digital image correlation)是一個全區域、非接觸式的應變量測方法,這個方法是對試片變形前及變形後的表面取影像,然後比對變形前及變形後的數位影像以找出某一小區域的位移及應變。為了比對變形前後的數位影像,本文提出一新穎之混合演算法,本演算法植基於實數型基因演算法及模擬退火法,再加上適應機制來決定動態之基因機率,其目的是為了改善基因演算法之基本性能,增快收斂速度,提高可靠度及精度。為了驗證數位影像關係法,本文以單軸向拉伸試驗來測試,並討論子影像大小、搜尋策略和亮度值平移處理,同時探討族群大小、世代數和疊代數等對結果的影響。結果顯示子影像越大則對結果是越好的,但計算時間也相對的增加許多。至於搜尋策略上,以二個為一組輪流重覆尋找其結果是較穩定的,而影像經過亮度值平移處理後要比未經過亮度值平移處理的好。另外在搜尋時間考慮下,族群數100、世代數200、疊代數60是足夠得到理想的結果。在微拉伸實驗材料有SU-8厚膜光阻、銅及鎳金屬薄膜共三種,由數位影像關係法所分析SU-8厚膜光阻之最大強度為74.2~77MPa,楊氏係數為3.4~3.8GPa之間。銅金屬薄膜之最大強度為225.5~391MPa之間,楊氏係數為52.6~140.6GPa之間。鎳金屬薄膜之最大強度為597.4~676.2MPa之間,楊氏係數為94.6~142.8GPa之間。
Digital image correlation is a whole-field and non-contact strain measuring method. This method takes and compares the digital images of the surface of a specimen before and after deformation to find the displacement and strain of a selected subset. In order to compare the two digital images, this study adopts a novel hybrid algorithm that is based on the real-parameter genetic algorithm and simulated annealing mutation. Adaptive mechanisms are also added in the algorithm to decide dynamic gene probability. Its purpose is to improve the basic performance of the genetic algorithm, to increase the convergence of the speed quickly, and to promote its reliability and accuracy. To examine Digital image correlation method, a uniaxial tensile test is conducted, and the size of the subset, the searching strategies, and the handling of the out-of-plane shift are discussed. At the same time, the population of size, generation, and iteration are selected. The result shows that the bigger the subset, and the better the result, but the much more time is consumed. As for the searching strategies, it is recommended to separate the variables into three groups and each time just one group is searched. Moreover, the results will be better if the out-of-plane shift is included in the variables. It is also suggested that population size 100, generation 200 and iteration 60 should be good enough. Three kinds of experiment materials, which are SU-8 resist, Cu and Ni metallic thin film, are investigated in this study. According to the analysis of digital image correlation method, the ultimate tensile strength of SU-8 resistance material is 74.2~77 MPa and Young’s modulus is around 3.5~3.8 GPa. The ultimate tensile strength of Cu metallic thin film is between 225~396 MPa and Young’s modulus is around 52.6~140.56 GPa. The ultimate tensile strength of Ni metallic thin film is between 567~676 MPa and Young’s modulus is around 94.6~142.8 GPa.
中文摘要 ………………………………………………………………… i
英文摘要 ………………………………………………………………… ii
誌謝 ………………………………………………………………… iv
目錄 ………………………………………………………………… v
表目錄 ………………………………………………………………… vii
圖目錄 ………………………………………………………………… ix
符號說明 ………………………………………………………………… xii

一、 前言…………………………………………………………… 1
1.1 研究背景及動機……………………………………………… 1
1.2 文獻回顧……………………………………………………… 2
1.2.1 數位影像關係法……………………………………………… 2
1.2.2 基因演算法…………………………………………………… 3
1.3 研究目的……………………………………………………… 4
1.4 論文架構……………………………………………………… 4

二、 理論基礎……………………………………………………… 6
2.1 數位影像關係法……………………………………………… 6
2.1.1 數位影像簡介………………………………………………… 6
2.1.2 變形理論……………………………………………………… 7
2.1.3 影像前處理…………………………………………………… 8
2.1.4 影像內插法…………………………………………………… 9
2.1.5 判斷影像的相關性…………………………………………… 10
2.1.6 亮度值平移處理……………………………………………… 10
2.2 基因演算法…………………………………………………… 11
2.2.1 基因演算法基本架構與資料結構…………………………… 11
2.2.2 定義目標函數與適應函數…………………………………… 12
2.2.3 演化機制……………………………………………………… 12
2.2.4 模擬退火法…………………………………………………… 14
2.2.5 適應性實數模擬退火基因演算法(ARSAGA) ……………… 15
2.2.6 控制參數……………………………………………………… 17
2.2.7 ARSAGA和數位影像關係法的結合…………………………… 18
2.2.8 變數產生模式………………………………………………… 19

三、 理論基礎……………………………………………………… 26
3.1 大試片拉伸實驗規劃………………………………………… 26
3.1.1 實驗儀器與設備……………………………………………… 26
3.1.2 試片取樣與拉伸實驗流程…………………………………… 26
3.2 微試片拉伸實驗規劃………………………………………… 27
3.2.1 微試片實驗儀器與設備……………………………………… 27
3.2.2 夾具設計……………………………………………………… 28
3.2.3 微試片設計與製作…………………………………………… 28
3.3.4 實驗流程……………………………………………………… 32

四、 參數探討與實驗結果討論…………………………………… 48
4.1 參數探討……………………………………………………… 48
4.2 SU-8厚膜光阻拉伸實驗……………………………………… 49
4.3 銅薄膜拉伸實驗……………………………………………… 50
4.4 鎳薄膜拉伸實驗……………………………………………… 52

五、 結論…………………………………………………………… 101

參考文獻 ………………………………………………………………… 102
[1] Peters, W. H., and Ranson, W. F., 1982, “Digital Image Techniques on Experimental Stress Analysis,” Optical Engineering, Vol. 21, No. 3, pp. 427-431.
[2] Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., and McNeill, S. R., 1983, “ Determination of Displacements Using an Improved Digital Image Correlation Method,” Image and Vision Computing, Vol. 1, No. 3, pp. 133-139.
[3] Chu, T. C., Peters, W. H., Sutton, M. A., McNeil, S. R., 1985, “Application of Digital Image Correlation to Experimental Mechanics,” Image and Vision Computing, Vol. 25, No. 3, pp. 232-245.
[4] Sutton, M. A., Cheng, M., Peters, W. H., Chao, Y. J., and McNeill, S. R., 1986, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image and Vision Computing, Vol. 4, No. 3, pp. 143-150.
[5] Bruck, H. A., McNeill, S. R., Sutton, M. A., Peters, W. H., 1989, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Experimental Mechanics, Vol. 29, No. 3, pp. 261-267.
[6] Choi, S., and Shah, S. P., 1997, “Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation,” Experimental Mechanics, Vol. 37, No. 3, pp. 307-313.
[7] Périé, Jean-Noël, Calloch, S., Cluzel, C., and Hild, F., 2002, “Analysis of a Multiaxial Test on a C/C Composite by Using Digital Image Correlation and a Damage Model,” Experimental Mechanics, Vol. 42, No. 3, pp. 318-328.
[8] Han, G., Sutton, M. A., and Chao, Y. J., 1994, “Study of Stationary Crack-tip Deformation Fields in Thin Sheets by Computer Vision,” Experimental Mechanics, Vol. 34, pp. 125-140.
[9] Han, G., Sutton, M. A., and Chao, Y. J., 1995, “Study of Stable Crack Growth in Thin SEC Specimens of 304 Stainless Steel by Computer Vision,” Engineering Fracture Mechanics, Vol. 52, pp. 525-555.
[10] Peters, W. H., He, Z. H., Sutton, M. A., and Ranson, W. F., 1984, “Two-dimensional Fluid Velocity Measurements by Use of Digital Speckle Correlation Techniques,” Experimental Mechanics, Vol. 24, pp. 117-121.
[11] Peters, W. H., Ranson, W. F., Sutton, M. A., Chu, T. C., and Anderson, J., 1983, “Applications of Digital Correlation Methods to Rigid Body Mechanics,” Optical Engineering, Vol. 22, pp. 738-742.
[12] Wu, W., Peters, W. H., and Hammer, M., 1987, “Basic Mechanical Properties of Retina in Simple Elongation,” Journal of Biomechanical Engineering, Trans. ASME, Vol. 109, pp. 65-67.
[13] Lu, H., Vendroux, G. Knauss, W. G., 1997, “Surface Deformation Measurements of Cylindrical Specimen by Digital Image Correlation,” Experimental Mechanics, Vol. 37, No. 4, pp. 433-439.
[14] Li, E. B., Tieu, A. K., Yuen, W. Y. D., 2003, “Application of Digital Image Correlation Technique to Dynamic Measurement of the Velocity Field in the Deformation Zone in Cold Rolling,” Optics and Lasers in Engineering, Vol. 39, pp. 479-488.
[15] 李國誌,2002,“應用數位影像關係法於微試件變形之量測”,國立成功大學機械工程學系碩士論文。
[16] 江偉傑,2004,“數位影像法於變形量測”,國立雲林科技大學機械工程系碩士論文。
[17] 王厚鈞,2005,“基因演算法應用於數位影像關係法及薄膜變形量測”,國立雲林科技大學機械工程系碩士論文。
[18] Vendroux, G., Knauss, W. G., 1998, “Submicron Deformation Field Measurements: Part I. Developing a Digital Scanning Tunneling Microscope,” Experimental Mechanics, Vol. 38, No. 1, pp. 18-23.
[19] Vendroux, G., Knauss, W. G., 1998, “Submicron Deformation Field Measurements: Part II. Improved Digital Image Correlation,” Experimental Mechanics, Vol. 38, No. 2, pp. 86-92.
[20] Vendroux, G., Knauss, W. G., 1998, “Submicron Deformation Field Measurements: Part 3. Demonstration of Deformation Determinations,” Experimental Mechanics, Vol. 38, No. 3, pp. 154-160.
[21] Chasiotis, I. and Knauss, W. G., 2002, “A New Microtensile Tester for the Study of MEMS Materials with the aid of Atomic Force Microscopy,” Experimental Mechanics, vol. 42, No. 1, pp. 51-57.
[22] Dumitrache, I. and Buiu, C., 1999, “Genetic Learning of Fuzzy Controllers,” Mathematics and Computers in Simulation, Vol. 49, No. 1-2, pp. 13-26.
[23] Jeong, I. K. and Lee, J. J., 1996, “Adaptive Simulated Annealing Genetic Algorithm for System Identification,” Engineering Application of Artificial Intelligence, Vol. 9, pp. 523-532.
[24] Kristinsson, K. and Dumont, G. A., 1992, “System Identification and Control Using Genetic Algorithms,” IEEE Transactions on System, Man, and Cybernetic, Vol. 22, No. 5, pp. 1033-1046.
[25] Huang, H. C., Pan, J. S., Lu, Z. M., Sun, S. H., Hang, H. M., 2000, “Vector Quantization Based on Genetic Simulated Annealing,” Signal Processing, Vol. 81, No. 7, pp. 1513-1523.
[26] Leite, J. P. and Topping, B. H. V., 1998, “Improved Genetic Operators for Structural Engineering Optimization,” Advances in Engineering Software, Vol. 29, pp. 529-562.
[27] Hasancebi, O. and Erbatur, F., 2000, “Evaluation of Crossover Techniques in Genetic Algorithm Based Optimization Structural Design,” Computers and Structures, Vol. 78, pp. 435-448.
[28] Nanakorn, P. and Meesomklin., K. 2001, “An Adaptive Penalty Function In Genetic Algorithms for Structural Design Optimization,” Computers and Structures, Vol. 79, No. 29-30, pp. 2527-2539.
[29] Wong, S. V. and Hamouda, A. M. S., 2000, “Optimization of Fuzzy Rules Design Using Genetic Algorithm,” Journal of Advances in Engineering Software, Vol. 31, No. 4, pp. 251-262.
[30] Hwang, S. F., and He, R. S., 2006, “Improving Real-Parameter Genetic Algorithm with Simulated Annealing for Engineering Problem,” Advances in Engineering Software, Vol. 37, No. 6, pp. 406-418.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top