跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/02/29 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建宏
研究生(外文):Jian-hung Lin
論文名稱:重金屬污泥之資源化及安定化研究
論文名稱(外文):The treatment study of Heavy Metal Sludge by the stability method
指導教授:方鴻源方鴻源引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:113
中文關鍵詞:重金屬污泥資源化安定化毒性特性溶出程序助熔劑磚材電解反應
外文關鍵詞:StablyTreatmentTCLPHeavy metal sludgeElectrolytic responseBrick materialflux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以工業上最常需要處理之電路板蝕刻污泥及電鍍污泥,利用各項物理及化學方法進行重金屬污泥之資源化及安定化研究。首先將取回之重金屬污泥樣本,進行酸消化法找出污泥中各種重金屬之含量,進一步改變浸漬劑種類、浸漬劑濃度、浸漬時間及固液比等操作條件,探討重金屬污泥經由酸處理後之浸漬效率。接著利用28%氨水進行中和試驗反應初步分開可回收之重金屬,將中和反應後之浸漬液以電解反應回收金屬,利用不同電流及溫度於8小時中探討金屬回收率與純度,達成重金屬回收資源化之結果,最後選定以燒製磚材方式作為安定化再利用處理技術,將處理後之污泥混入於製磚基礎材料中,並使用玻璃粉當作磚材之助熔劑,幫助磚材降低燒結溫度及提升磚材強度及耐磨之特性,實驗探討物料組成變化對燒結成品特性之影響,如:比重、吸水率、單軸抗壓強度、體積收縮率、燒失率、重金屬毒性溶出特性及SEM/EDS分析等。
實驗結果顯示,蝕刻污泥以硫酸為浸漬液於時間1小時、固液比20g/200mL、溫度65℃時可達到金屬較佳之浸出效率;電鍍污泥以硝酸為浸漬液於時間1小時、固液比20g/200mL、溫度65℃時可達到金屬較佳之浸出效率。電解回收有價金屬實驗得知:蝕刻污泥浸出液中可於電流0.5A及時間8小時下,回收有價金屬銅其回收率97.79%、純度為99.50%;電鍍污泥浸出液中可於電流3A及時間8小時下,回收有價金屬銅其回收率97.79%、純度為57.32%,在將浸出液於溫度55℃、電流0.7A及時間8小時下,回收有價金屬鎳其回收率83.32%、純度為99.40%。燒失率及體積收縮率方面,磚材之燒失率及體積收縮率皆會隨添加玻璃粉量增加而緩慢減少之趨勢,而探討處理後污泥添加量方面,磚坯之燒失率隨污泥添加量增加而增加之趨勢,而體積收縮率則隨污泥量添加增加而緩慢增加之趨勢。毒性特性溶出程序探討添加處理後污泥於磚材安定化,其重金屬溶出皆在法規標準值之內,由此可知重金屬污泥藉由處理後以磚材燒製之安定化效果是具有可行性。經由SEM/EDS分析可知,磚材在添加處理後重金屬污泥外觀上並無明顯之變化,其磚材元素以Si元素為主,並也含有O、Al、K、Ca、Ti、Fe、Na、S等元素。
This thesis engages in the recycling and stabilizing processes of electronic and electroplating heavy-metal sludge, which is often produced in industry, with various physical and chemical analyses. In the research, the heavy metal contents of obtained sludge sample are first analyzed by the method of acid digestion, and then the leaching efficiency of heavy metal sludge is measured with different conditions, such as various kinds, concentrations, durations and solid liquid ratios of Acid solutions. Second, the recyclable heavy metals are primarily separated by neutralization reaction with 28% NH4OH, and are further recycled by electrolysis. With different electronic currency and temperatures, the eight-hour metal recycling ratio and purity are measured in this process. Finally, by the selected technique of composition of brick as the method of stabilization and re-utilization, the processed sludge is then mixed and sintered with the brick materials and with silicon powder applied as flux, which decreases the required sintering temperature and increases the strength and the friction of the brick materials. The effects of the various brick material contents to the characters of sintered products, such as specific gravity, water adsorption content, fracture strength were studied, the ratio of volume shrinkage and burn-up, TCLP of heavy mental and SEM/EDS analysis, are measured.
The results show that the electronic sludge with one-hour immersion of H2SO4 acid solution, 20g/200mL Solid liquid ratio, and with 65℃ temperature has the best metal leaching efficiency, whilst electroplating sludge with one-hour immersion of HNO3 acid solution, 20g/200mL Solid liquid ratio, and with 65℃ temperature has the best leaching efficiency. The results in electrolytic recycling of valuable metal show that in the acid solutions of electronic sludge with eight-hour, 0.5A electronic currency, the recycle ratio of Copper is 97.79% with 99.50% purity. As for the acid solutions of electroplating sludge, in eight-hour, 3A electronic currency, the recycle ratio of Copper is 97.79% with 57.32% purity, whilst in 55℃, eight-hour 0.7A electronic currency, the recycle ratio of Nickel is 83.32% with 99.40% purity. In the analyses to the ratio of volume shrinkage and that of burn-up of brick material, both of them are decreased whilst the amount of additive silicon powder increases. Meanwhile in the aspect of additive mass of sludge, with the mass grows, the ratio of burn-up increases and the ratio of volume shrinkage also slowly does. In the experiment of TCLP for stabilization with bricks materials, for the reason that all the leaching value of heavy metal fall within the official criteria, the effect of the stabilization of processed heavy metal sludge by the technique of brick composition is obviously reliable. And in the SEM/EDS analysis, after the brick materials mixing process, the appearance of heavy metal sludge does not have obvious changes, and the brick materials are mainly constituted by Si, with other elements such as O, Al, K, Ca, Ti, Fe, Na and S.
摘要 I
ABSTRACT III
誌 謝 V
目錄 VI
圖目錄 IX
表目錄 XII
一、緒論 1
1.1 研究背景 1
1.2 研究目標 2
二、文獻回顧 3
2.1 電鍍製程 3
2.1.1 電鍍製程概況 4
2.1.2 台灣地區電鍍業概況 5
2.2 國內重金屬污泥產生來源 6
2.2.1 電鍍污泥的產生 6
2.2.2 蝕刻污泥的產生 8
2.3 國內申報重金屬污泥之情形 10
2.4 重金屬污泥之處理技術及相關研究回顧 11
2.4.1 重金屬污泥前處理概述 11
2.4.2 重金屬污泥相關處理技術 12
2.4.3 相關技術回顧 18
2.5 金屬電解析出回收原理 22
2.5.1金屬之電解提取 23
2.5.2金屬之電解精煉 24
2.6 燒結技術原理 25
2.6.1 磚材原料概述 26
2.6.2 磚材燒製之概述 28
三、研究方法及設備材料 30
3.1 研究流程 30
3.2 實驗藥品 32
3.3 實驗設備 33
3.4 實驗方法 34
3.4.1 污泥取樣 34
3.4.2 基本性質分析 35
3.4.3 酸浸漬實驗 36
3.4.4 中和反應實驗 38
3.4.5 電解回收實驗 39
3.4.6 污泥安定化 40
四、結果與討論 47
4.1 污泥前處理 47
4.2 全量之分析 48
4.3 酸浸漬實驗 51
4.3.1 酸浸漬實驗之效率 51
4.3.2 不同時間之酸浸漬 54
4.3.3 不同固液比之酸浸漬之結果 56
4.3.4 不同溫度對酸浸漬之影響 57
4.4 中和反應沈澱分離 58
4.5 有價金屬電解之回收 61
4.5.1 蝕刻污泥電解之回收銅情形 61
4.5.2 電鍍污泥電解之回收有價金屬情形 63
4.6 污泥安定化之研究 66
4.6.1 污泥製磚之基本性質 66
4.6.2 磚坯之燒失率及體積收縮率 70
4.6.3 磚材之毒性特性溶出程序 72
4.6.4 微結構觀測試驗 74
五、結論與建議 77
5.1 結論 77
5.2 建議 79
參考文獻 80
附 錄 85
1.Renard D. R. (1987), ”Metal recovery from leached plating sludge”, Plating and Surface Finishing, pp. 46~48.
2.McKinley Marvin D Warren Garry W. Lahoti Sanjeev M.
Sreenivasarao Kandipati (1992), “Stabilization and hydrometallurgical
treatment of flyash from a municipal incinerator”, Journal of Hazardous Materials, Vol. 29 No. 7, pp. 255∼273.
3.Chmielewski A. G. Urbanski T.S. and Migdal W. (1997), “Separation technologies for metals recovery from industrial wastes”, Hydrometallurgy, Vol. 45 pp. 333-344.
4.Okuno N. and Takahashi S. (1997), “Full scale application of
manufacturing bricks from sewage”, WATER SCI TECHNOL,
Vol. 11, pp. 243-250.
5.Bernd Wiebusch and Carl Franz Seyfried (1997), “Resource Recovery of Sludge Management”, Wat. Sci, Tech. Vol. 36 No. 11, pp. 259-266.
6.Chang C. J. and Liu J. C. (1998), “Feasibility of copper leaching from an industrial sludge using ammonia solutions”, J. of Hazardous Materials, pp.58, 121-132.
7.Giovanni Tiravanti, Domenico Petruzzelli, Roverto Passino. (2000), “Low and non waste technologies for metals recovery by reactive polymers”, Waste Management, Vol. 16 No. 7, pp. 597-605.
8.Matthew G. James, James K. Beattie, Brendan J. Kennedy, (2000), “Recovery of chromate from electroplating sludge”, Waste Manage & Research Vol.18 No.4, pp. 380-385.
9.Espinosa D.C.R. and Tenorio J.A.S. (2001),” Thermal behavior of chromium electroplating sludge”, Waste Management, Vol. 21,pp. 405-410.
10.Lin D. F. and Weng C. H. (2001), “Use of sewage sludge ash as brick
material”, J ENVIRON ENG-ASCE, Vol. 127 No. 10, pp. 922-927.
11.Kikuchi, Ryunosuke (2001), “Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker”, Resources, Conservation and Recycling, Vol. 31 Issue: 2, pp. 137-147.
12.Cenni R., Janisch B., Spliethoff H., Hein K.R.G., (2001), “Legislative and environmental issues on the use of ash form coal and municipal sewage sludge co-firing as construction material”, Waste Managemen, Vol. 21 Issue: 1, pp. 17-31.
13.P. Sylvester, L. A. Rutherford, JR., A. Gonzalez-Martin, J. Kim. (2001), “Ferrate treatment for removing chromium from high-level radioactive tank waste”. Environ. Sci. Technol. Vol 35, pp. 216-221.
14.Arslan C. and Arslan F. (2002), “Recovery of copper, cobalt, and zinc from copper smelter and converter slags ”, Hydrometallurgy, No. 67, pp. 1-7.
15.Sastre J. Sahuquillo A. Vidal M. and Rauret G. (2002), “Determination of Cd, Cu, Pb, and Zn in environmental samples:microwave-assisted total digestion versus aqua regia and nitric acid extraction”, Analytica Chimica Acta, Vol. 462, pp. 59-72.
16.Alvarez E. A. Mochon M. C. Jimenez Sanchez J. C. and Rodriguez M. T. (2002), “Heavy metal extractable forms in sludge from wastewater treatment plants”, Chemosphere, Vol. 47, pp. 765-775.
17.Barrado E. Prieto F. Medina J. López F. A.(2002), “Characterisation of solid residues obtained on removal of Cr from waste water”, Journal
of Alloys and Ccompounds, Vol.335, pp. 203-209.
18.Kendall, D. S., (2003) “Toxicity characteristic leaching procedure and iron treatment of brass foundry waste”, Environmental Science and Technology, Vol. 37 pp. 367-371.
19.Liu, J. C. and Kao, T. H. (2003), “Extraction of Cu and Pb from printed circuit board sludge using ammonia solutions”, Water Science & Technology, Vol. 47 pp. 167-172.
20.澤地實、三谷明彥、福永勤、伊藤尚夫 (1999),”水洗淨法によるこ飛灰の無害化處理に關する實證研究”,第5回廢棄物棄物學會研究發表會講演論文集,pp. 333∼335。
21.蔡騰龍(1984),”聚電解質與淨水處理”,正文書局,第38 ∼ 40頁。
22.李展平、黃娟娟、張岑熙、景種、黃屏生、翁瑞光(1984),”簡明分析化學”,藝軒圖書出版社,第87 ∼ 100頁。
23.林立(1991),”工程材料”,三民書局,第301 ∼ 319頁。
24.王鯤生、張旭彰(1993),”都市垃圾焚化灰渣熔融處理熔渣特性之研究”,焚化灰渣處理技術研討會論文集,第4-1 ∼ 4-23頁。
25.黃樹倫、陳漢恆(1995),”廢電路板及污泥中銅之回收再利用”,私立中國文化大學應用化學研究所碩士論文,第12頁。
26.Patton W. J. 、王堯雄(1995),”營建材料學”,科技圖書股份有限公司,修訂版,第123 ∼ 125頁。
27.楊萬發、黃勉善、徐家玫、蘇雪華(1997),”電鍍業減廢回收與污染防治”,工業污染防治技術服務團,第15 ∼ 16、30 ∼ 31頁。
28.林黃修(1997),”資源回收再利用技術-重金屬污泥”,工業污染防制報導,財團法人中國技術服務社,第12 ∼ 13頁。
29.經濟部工業局工業污染防制中心(1999),”經濟部工業局電鍍廢液處理示範中心簡介”,工業污染防治技術服務團,第1頁。
30.黃心亮、魏玉麟(2000),”鉻鋅污泥熱處理之研究”,東海大學環境科學研究所,碩士論文,第1 ∼ 2頁。
31.高輝楊、林敬二、楊美惠、楊寶旺、廖德章、薛敬和(2000),”英、中、日化學大辭典”,高立圖書有限公司,二版三刷,第542 ∼ 543頁。
32.黃明鈺、王文生(2000),”廢玻璃容器與地磚坯土混合燒成燒結特性之探討”,國立台北科技大學材料及資源工程系碩士論文,第14 ∼ 18頁。
33.邱念華、熊楚強、王月(2001),”電化學”,文京圖書有限公司,修訂版二刷,第379 ∼ 382頁。
34.蘇英源、郭金國(2001),”冶金學”,全華科技圖書,二版二刷,第4-1 ∼ 4-2、6-45 ∼ 6-46頁。
35.歐陽嶠暉(2001),”下水道工程學”,長松文化公司,三版再修訂,第485 ∼ 486頁。
36.周信輝、蔡敏行(2001),”都市垃圾焚化反應灰安定化之研究” 國立成功大學資源工程學系碩士論文,第1 ∼ 2頁。
37.張芳志、林志棟、王鯤生(2001),”火力電廠污泥營建材料資源化研究”,國立中央大學土木工程系碩士論文,第1頁。
38.張毓寬、蔡敏行(2002),”鉻污泥資源化基礎研究”,國立成功大學資源工程學系碩士論文,第1 ∼ 2、3 ∼ 4頁。
39.黃奕叡、李俊德、李文智(2002),”廢棄物焚化灰渣熱熔之研究”,國立成功大學環境工程學系碩士論文,第45 ∼ 46頁。
40.曾楹珍、郭昭吟(2004),”以酸溶出法處理印刷電路板廠重金屬污泥之研究”,國立雲林科技大學環境與安全衛生工程研究所碩士論文,第1、12 ∼ 13頁。
41.行政院環境保護署(2004),”有害事業廢棄物固化處理廠及固化掩埋場環境管理查核研究計畫”,期末報告書計畫編號:
EPA-93-U1H1-02-102,第3-3 ∼ 3-5頁。
42.陳炯立、陳志恆(2004),”含重金屬污泥燒製磚材資源化之研究”,
國立台北科技大學材料及資源工程系碩士論文,第1頁。
43.污泥及沉積物中重金屬檢測方法-酸消化法,NIEA R353.00C (2005)。
44.事業廢棄物毒性特性溶出程序,NIEA R201.13C (2005)。
45.行政院環保署業廢棄物申報管制資訊網,http://waste.epa.gov.tw/prog/IndexFrame.asp。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊