跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/28 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝嘉鴻
研究生(外文):Chia-Hung Hsieh
論文名稱:新型光觸媒之製備及光催化染料廢水之研究
論文名稱(外文):Preparation of Additive Photocatalysts and Photodegradation Azo-Dyes in Aqueous
指導教授:郭昭吟郭昭吟引用關係
指導教授(外文):Chao-Yin Kuo
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:179
中文關鍵詞:聚乙二醇光觸媒溶膠凝膠法偶氮染料
外文關鍵詞:additive photocatalystsplatinumpolyethyleneglycolProcion-Red MX-5Bphotodegradation
相關次數:
  • 被引用被引用:23
  • 點閱點閱:859
  • 評分評分:
  • 下載下載:164
  • 收藏至我的研究室書目清單書目收藏:2
本研究以溶膠凝膠法(sol-gel)製備新型TiO2、新型SnO2與結合式TiO2/SnO2光觸媒,製備過程中以界面活性劑(聚乙二醇-PEG)與貴金屬(鉑-Pt)為改質劑,並同時探討鍛燒溫度對光活性之影響。本研究實驗結果發現,添加PEG之TiO2與TiO2/SnO2的團聚現象明顯改善,比表面積也上升至54.85與54.87 m2/g,有助於後續的光催化實驗。光觸媒TiO2晶相由XRD分析顯示,由400℃開始隨著鍛燒溫度的升高,Anatase相漸漸減少且波峰強度下降,至500與600℃時,Rutile相佔了多數且繞射峰強度大,由此可知若欲製備出高光活性的TiO2,鍛燒溫度不宜超過400℃。
在光活性表現方面,單一光觸媒系統中,TiO2的光催化效果遠勝於SnO2,改質後光催化效率最佳的觸媒為TiO2/PEG/Pt,在254 nm系統進行光反應達150分鐘後,偶氮染料Procion-Red MX-5B色度已能完全去除、硫基鍵之破壞所測得之硫酸根離子超過6 mg/L、總有機碳之礦化效果也達八成以上。結合式光觸媒系統中,以改質後的TiO2/SnO2/PEG/Pt觸媒效能最好,在光催化反應達300分鐘後,色度在120分鐘時已幾乎去除,測得之硫酸根離子在210分鐘時已達近飽和之7.3 mg/L,總有機碳濃度在300分鐘後更已低於10%以下。本研究製備的TiO2/PEG/Pt觸媒,在可見光波長410 nm下使用的光催化效果可勝於在紫外光365 nm下使用的商用觸媒,有利於後續利用自然太陽光來激發光觸媒之研究,對於經濟成本效益上的考量是一個突破。
The new sol-gel methods with preparing additive photocatalysts of TiO2, SnO2 and TiO2/SnO2 using polyethyleneglycol (PEG) and platinum (Pt) were investigated. The physicochemical properties and photocatalytic activity for degradation of azo-dyes Procion-Red MX-5B of the additive photocatalysts were analyzed.
The better photocatalytic activity reached when the TiO2 calcinations were finished at 400℃ after a sol-gel process, and the photocatalytic activity was markedly reduced above 500℃ because of anatase and rutile types’ transformation. The texture of the photocatalysts were examined by scanning electron microscopy (SEM) and the images showed the difference between TiO2 and TiO2/PEG, because the nano particles of TiO2/PEG are more separate and uniform shape than TiO2.
Due to the high dispersion in the gel of PEG, the additive photocatalysts formed large surface areas and porous structure formations with TiO2/PEG and TiO2/SnO2/PEG preparation system. The surface area of TiO2/PEG and TiO2/SnO2/PEG were 54.85 and 54.87 m2/g form BET, respectively. Moreover, Pt 1% addition into preparing photocatalysts of TiO2 and SnO2, the photocatalytic activity improved at system of 254 nm in UV light wavelength, because at above system, there would be more electrons that were generated and
Pt could play an important role for catching electrons and then transformed into hydroxyl radical.
On the base of the efficiency of photodegradation treating Procion-Red MX-5B in aqueous, the useful sol-gel methods with preparing additive photocatalysts were established. The additive photocatalysts as a single photocatalyst of TiO2/PEG/Pt and a combined photocatalyst of TiO2/SnO2/PEG/Pt, both of them with dosage 1 g/L and 2 g/L used in photodegradation of Procion-Red MX-5B in aqueous at UV 254 nm system, then the depigmentation reached 100% after reacting 150 mins and after 300 mins, SO42- ions removed from Procion-Red MX-5B in aqueous were found as 7.3 mg/L near 100% and the concentration of total organic carbon (TOC) was less than 10%.
The kinetics of the photocatalytic degradation of Procion-Red MX-5B in aqueous can be described by the first-order kinetic model, the result showed the degradation rate constant that obtained in this study is 254 nm > 365 nm > 410 nm of light wavelength system. The effect in PEG and Pt of degradation rate constants revealed when the addition exists of photocatalysts that will be increased, the degradation rate constants of TiO2/SnO2, TiO2/SnO2/PEG and TiO2/SnO2/PEG/Pt combined 365 nm system that were 0.0163, 0.0289 and 0.0342 min-1, PEG is a better addition than Pt.
In addition, comparison the efficiency between the additive photocatalysts as a TiO2/PEG/Pt under visible light 410 nm and commercial photocatalysts as a TiO2(MERCK) under UV light wavelength of 365 nm, the TiO2/PEG/Pt was better 10% after reacting 150 mins than commercial TiO2(MERCK). The experimental result showed the contribution of the new sol-gel method because the additive photocatalysts should use sunlight as light source and reduce cost.
目錄
目錄 i
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1 研究動機 1
1-2 研究目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1 染整工業廢水 4
2-1-1 染整產業面面觀 4
2-1-2 排放特性及污染源 7
2-1-3 本研究之染料廢水特性介紹 9
2-2 半導體光觸媒 11
2-2-1 物質的能階與導電性 11
2-2-2 能帶理論 12
2-2-3 半導體光觸媒種類 14
2-3 光催化反應程序 18
2-3-1 光粒子之吸收與發射 18
2-3-2 光化學反應分類 21
2-3-3 UV/半導體光觸媒程序 24
2-4 溶膠凝膠法 29
2-4-1 溶膠凝膠法基本介紹 29
2-4-2 溶膠凝膠法驅動力 31
2-4-3 溶膠凝膠法之影響因素 33
2-5 UV/半導體光觸媒相關處理文獻 40
2-5-1 觸媒添加界面活性劑之影響 40
2-5-2 觸媒添加貴金屬之影響 43
2-5-3 複合光觸媒之內電子傳遞效應(IPET) 47
第三章 實驗材料與方法 51
3-1 實驗方法 51
3-1-1 實驗架構 52
3-1-2 操作因子 53
3-2 光觸媒製備 54
3-2-1 TiO2之製備 54
3-2-2 SnO2之製備 56
3-2-3 TiO2/SnO2之製備 58
3-3 實驗儀器及分析藥品 61
3-3-1 光反應槽之介紹 61
3-3-2 分析及控制儀器介紹 63
3-3-3 分析藥品 67
3-4 光反應分析 68
3-4-1 光催化降解步驟 68
3-4-2 染整廢水色度分析 70
3-4-3 水中離子濃度分析 70
3-4-4 總有機碳分析 71
3-5 光觸媒物化特性分析 72
3-5-1 晶相鑑定分析(X-Ray diffraction, XRD) 72
3-5-2 比表面積計算(BET) 73
3-5-3 表面組織觀察(Scanning Electron Microscope, SEM) 75
3-6 樣品分析之品保與品管(QA/QC) 77
3-6-1 樣品分析 77
3-6-2 方法偵測極限(Method Detection Limit, MDL) 78
3-6-3 精密度(Precision)與準確度(Accuracy) 82
3-6-4 硫酸根離子與TOC管制圖之建立 84
第四章 結果與討論 86
4-1 觸媒物化特性分析 86
4-1-1 比表面積分析(BET) 86
4-1-2 晶相鑑定分析(XRD) 88
4-1-3 表面顯微觀測(SEM) 92
4-1-4 能量散射光譜分析(EDS) 97
4-2 光催化反應背景實驗分析 99
4-2-1 MX-5B染料水溶液最大吸收波長測定 99
4-2-2 光觸媒吸附實驗 101
4-2-3 不同波長光源之直接光解 102
4-3 新型光觸媒光催化實驗 103
4-3-1 新型光觸媒鍛燒溫度選擇 103
4-3-2 可見光波長410 nm之光催化實驗 104
4-3-3 紫外光波長365與254 nm之光催化實驗 107
4-3-4 光觸媒SnO2之光催化實驗 113
4-3-5 結合式光觸媒之光催化實驗 116
4-4 光反應因子效應探討 122
4-4-1 波長效應 122
4-4-2 反應速率常數推估 123
4-4-3 總碳與硫酸根之質量平衡 128
4-4-4 光觸媒劑量效應 132
第五章 結論與建議 135
5-1 結論 135
5-2 建議 137
參考文獻 138
附錄 148



表目錄
表2-1 民國九十四年九月我國染料進出口量值統計表(染,2006) 6
表2-2 反應性染料Procion Red MX-5B基本性質(Wu, 2004) 10
表2-3 n型與p型之半導體光觸媒整理(Brian, 2004) 17
表2-4 常見化學鍵斷鍵時所需能量與最大波長(Legan, 1982) 20
表2-5 常見發色團之游離能與最大吸收波長(Skoog et al., 1994) 22
表2-6 溶膠凝膠法的優點(傅,2005) 30
表2-7 不同比例晶相TiO2之光活性比較表(Bacsa and Kiwi, 1998) 38
表2-8 加入PEG對光觸媒薄膜厚度的影響(Sonawane et al., 2004) 43
表3-1 本研究實驗設計變因及控因 53
表3-2 反應槽細部規格 61
表3-3 實驗分析藥品 67
表3-4 MX-5B七重覆分析表 79
表3-5 硫酸根離子七重覆分析表 80
表3-6 TOC七重覆分析表 81
表3-7 精密度與準確度 83
表4-1 不同形式光觸媒之比表面積分析 87
表4-2 TiO2/PEG/Pt之能量散射光譜分析表 97
表4-3 TiO2/SnO2/PEG/Pt之能量散射光譜分析表 98
表4-4 反應速率常數表 124


圖目錄
圖1-1 研究規劃流程圖 3
圖2-1 反應性染料Procion Red MX-5B化學結構圖(Hu et al., 2003) 9
圖2-2 導電率(和電阻係數)圖譜(李志偉等,2001) 12
圖2-3 不同導體之能帶結構示意圖(a)導體,價帶中佔有部分電子、 13
圖2-4 電子由價帶跳躍致傳導帶之示意圖(a)激發前與(b)激發後(William and Callister, 2003) 14
圖2-5 本質半導體能階示意圖(蔡丕樁等,1999) 15
圖2-6 n-type 半導體能階示意圖(蔡丕樁等,1999) 16
圖2-7 p-type 半導體能階示意圖(蔡丕樁等,1999) 16
圖2-8 物質吸收光之現象(許,2002) 18
圖2-9 物質放出光之現象(許,2002) 19
圖2-10 光觸媒反應機制示意圖 24
圖2-11 本質性半導體光觸媒光催化機制圖(Jing et al., 2003) 26
圖2-12 n-type型半導體光觸媒光催化機制圖(Jing et al., 2003) 27
圖2-13 p-type型半導體光觸媒光催化機制圖(Jing et al., 2003) 28
圖2-14 溶膠凝膠法技術與應用領域(蔡,2001) 30
圖2-15 晶相成長和孔徑大小與鍛燒溫度之關係圖 (Yoshini and Motohiro, 2001) 36
圖2-16 單位質量光觸媒之光活性與單位比表面積分之光活性與鍛燒 37
溫度關係之雙軸曲線圖(Yoshini and Motohiro, 2001) 37
圖2-17 燒結光觸媒之XRD雷射光粉末繞射圖(侯,2002) 39
圖2-18 TiO2/SiO2光觸媒製備流程圖(Atsunori et al., 2001) 41
圖2-19 不同製程之SnO2粉末比表面積之比較(A)未加界面活性劑 42
(B)加入界面活性劑(董,2004) 42
圖2-20 傳統與多孔粉末光觸媒之微胞模型圖(a)表面Pt(b)內部Pt 44
(Jian et al., 1999) 44
圖2-21 添加不同比例Pt之TiO2光催化效率圖(A)處理甲基藍 45
(B)處理甲基橙(Li and Li, 2002) 45
圖2-22 TiO2/Pt表面光敏化反應機制圖(1)(Ryu et al., 2002) 46
圖2-23 TiO2/Pt表面光敏化反應機制圖(2)(Ryu et al., 2003) 46
圖2-24 內電子傳遞效應理論圖(A)激發之電子傳遞至未激發半導體(B)兩種半導體皆被激發(Serpone et al, 1995) 47
圖2-25 複合式光觸媒與單一光觸媒處理效果之比較(1)無觸媒(2) TiO2(3)BaTi4O9(4)複合式I(5)複合式II(6)複合式III(Leyva et al., 1998) 48
圖2-26 TiO2/SiO2與單一TiO2處理丙烷效果比較圖(a)無觸媒 49
(b)P25TiO2(c)TiO2/SiO2暗吸附(d) TiO2/SiO2(Tsunehiro et al., 2002) 49
圖2-27 不同鍛燒溫度下ZnO/SnO2光催化甲基橙染料 50
(Wang et al., 2004) 50
圖3-1 實驗架構總圖 52
圖3-2 光觸媒製備型式總圖 54
圖3-3 反應槽結構圖 62
圖3-4 硫酸根離子重覆分析管制圖 85
圖3-5 TOC重覆分析管制圖 85
圖4-1 商用TiO2與不同溫度鍛燒TiO2之XRD繞射圖 89
圖4-2 商用TiO2與新型TiO2之XRD繞射圖 90
圖4-3 結合式光觸媒TiO2/SnO2之XRD繞射圖 91
圖4-4 TiO2之SEM照測圖 92
圖4-5 TiO2/PEG之SEM照測圖 93
圖4-6 TiO2/PEG/Pt之SEM照測圖 94
圖4-7 TiO2/SnO2之SEM照測圖 95
圖4-8 TiO2/SnO2/PEG/Pt之SEM照測圖 95
圖4-9 TiO2/PEG/Pt之能量散射光譜分析圖 97
圖4-10 為觸媒TiO2/SnO2/PEG/Pt之能量散射光譜分析圖 98
圖4-11 MX-5B染料之最大吸收波長 100
圖4-12 MX-5B染料吸光值之檢量線 100
圖4-13 TiO2光觸媒之吸附效應圖 101
圖4-14 不同波長之UV光直接光解比較圖 102
圖4-15 波長365 nm TiO2於三種鍛燒溫度下之光降解圖 103
圖4-16 波長410 nm 不同TiO2之光降解圖 104
圖4-17 波長410 nm 不同TiO2之硫酸根離子生成圖 105
圖4-18 波長410 nm 不同TiO2之總有機碳礦化圖 106
圖4-19 波長365 nm 不同TiO2之光降解圖 108
圖4-20 波長254 nm 不同TiO2之光降解圖 108
圖4-21 波長365 nm 不同TiO2之硫酸根離子生成圖 110
圖4-22 波長254 nm 不同TiO2之硫酸根離子生成圖 110
圖4-23 波長365 nm 不同TiO2之總有機碳礦化圖 112
圖4-24 波長254 nm 不同TiO2之總有機碳礦化圖 112
圖4-25 波長254 nm 不同SnO2之光降解圖 113
圖4-26 波長254 nm 不同SnO2之硫酸根離子生成圖 114
圖4-27 波長254 nm 不同SnO2之總有機碳礦化圖 115
圖4-28 波長365 nm 結合式光觸媒之光降解圖 116
圖4-29 波長254 nm 結合式光觸媒之光降解圖 117
圖4-30 365 nm 結合式光觸媒之硫酸根離子生成圖 119
圖4-31 254 nm 結合式光觸媒之硫酸根離子生成圖 119
圖4-32 波長365 nm 結合式光觸媒之總有機碳礦化圖 121
圖4-33 波長254 nm 結合式光觸媒之總有機碳礦化圖 121
圖4-34 新型光觸媒之波長效應圖 122
圖4-35 410 nm之實驗因子反應速率常數圖 126
圖4-36 365 nm之實驗因子反應速率常數圖 126
圖4-37 365 nm結合式觸媒之實驗因子反應速率常數圖 127
圖4-38 觸媒TiO2/PEG/Pt光催化MX-5B之總碳質量平衡圖 129
圖4-39 觸媒TiO2/SnO2/PEG/Pt光催化MX-5B之總碳質量平衡圖 130
圖4-40 觸媒TiO2/PEG/Pt光催化MX-5B之總硫質量平衡圖 131
圖4-41 光觸媒TiO2/PEG/Pt對於污染物色度去除之劑量效應圖 133
圖4-42 光觸媒TiO2/PEG/Pt對於污染物鍵結破壞之劑量效應圖 133
圖4-43 光觸媒TiO2/PEG/Pt對於污染物總有機碳去除之劑量效應圖 134
參考文獻
英文部分
Antonino, S., and Herrmann, J. M., “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media,” Journal of Photochemistry and Photobiology A: Chemistry, 113, 181-188, 1998.


Arslan, I., and Akmehmet Balcioglu, I., “Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study,” Dyes and Pigments, 43, 95-108, 1999.


Atsunori, M., Yoshinori, K., Toshihiro, K., Masahiro, T., and Tsutomu, M., “Photocatalytic Decomposition of Acetaldehyde with Anatase Nanocrystals-Dispersed Silica Films Prepared by the Sol-Gel Process with Hot Water Treatment,” Journal of Sol-Gel Science and Technology, 22, 41-46, 2001.


Bacsa, R. R., and Kiwi, J., “Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid,” Applied Catalysis B: Environmental, 16, 19-29, 1998.


Brian, S. M., “An Introduction to Materials Engineering and Science for Chemical and Materials Engineers,” John Wiley and Sons, Inc. Hoboken, 2004.


Daoud, W. A., and Xin, J. H., “Low Temperature Sol-Gel Processed Photocatalytic Titania Coating,” Journal of Sol-Gel Science and Technology, 29, 25-29, 2004.




Ding, Z., Lu, G. Q., and Greenfield, P. F., “A Kinetic Study on Photocatalytic Oxidation of Phenol in Water by Silica-Dispersed Titania Nanoparticles,” Journal of Colloid and Interface Science, 232, 1-9,2000.


Geula, D., and Micha, T., “Preparation and characterization of TiO2 aerogels for use as photocatalysts,” Journal of Non-Crystalline Solids, 175, 294-302, 1994.


Goloub, T. P., Pugh, R. J., and Zhmud, B. V., “Micellar Interactions in Nonionic/Ionic Mixed Surfactant Systems,” Journal of Colloid and Interface Science, 229, 72-81, 2000.


Gungor, N., Alemdar, A., Atici, O., and Ece, I. O., “The effect of SDS surfactant on the flow and zeta potential of bentonite suspensions,” Materials Letters, 51, 250-254, 2001.


Hu, C., and Wang, Y., “Decolorization and Biodegradability of Photocatalytic Treated Azo Dyes Wool Textile Wastewater,” Chemosphere, 39, 12, 2107-2115, 1999.


Hu, C., Yu, J. C., Hao, Z., and Wong, P. K., “Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes,” Applied Catalysis B: Environmental, 46, 35-47, 2003.


Ismail, A. A., Ibrahim, I. A., Ahmed, M. S., Mohamed, R. M., and El-Shall, H., “Sol–gel synthesis of titania–silica photocatalyst for cyanide photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, 163, 445-451, 2004.





Ivanda, M., Music, S., Popovic, S., and Gotic, M., “XRD, Raman and FT-IR spectroscopic observations of nanosized TiO2 synthesized by the sol–gel method based on an esterification reaction,” Journal of Molecular Structure, 480-481, 645-649, 1999.

Jing, L., Sun, X., Shang, J., Cai, W., Xu, Z., Du, Y., and Fu, H., “Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis,” Solar Energy Materials and Solar Cells, 79, 133-151, 2003.


Jian, C., Ollis, D. F., Rulkens, W. H., and Bruning, H., “Kinetic Processes of Photocatalytic Mineralization of Alcohols on MEetallized Titanium Dioxide,” Water Research, 33, 5, 1173-1180, 1999.


Juang, H. Y., and Hon, M. H., “Effect of calcination on sintering of hydroxyapatite,” Biomaterials, 17, 2059-2064, 1996.


Kuo, W. S., and Ho, P. H., “Solar photocatalytic decolorization of dyes in solution with TiO2 film,” Dyes and Pigments, 71, 212-217, 2006.


Legan, R. W., “Ultraviolet Light Takes on CPI Roles,” Cheristry Engineering, January, 95-100, 1982.


Leyva, E., Moctezuma, E., Ruiz, M. G., and Martinez, L. T., “Photodegradation of phenol and 4-chlorophrnol by BaO-Li2O-TiO2 catalysts,” Catalysis Today, 40, 367-376, 1998.


Liakou, S., Pavlou, S., and Lyberatos, G., “Ozonation of Azo Dyes,” Water Science Techology, 35, 4, 279-286, 1997.


Li, F. B., and Li, X. Z., “The enhancement of photodegradation efficiency using Pt–TiO2 catalyst,” Chemosphere, 48, 1103-1111, 2002.
Liu, G., Li, X., Zhao, J., Satoshi, H., and Hisao, H., “Photooxidation mechanism of dye alizarin red in TiO2 dispersions under visible illumination: an experimental and theoretical examination,” Journal of Molecular Catalysis A: Chemical, 153, 221-229, 2000.


Misook, K., “Preparation of TiO2 photocatalyst film and its catalytic performance for 1,1-dimethyl-4,4-bipyidium dichloride decomposition,” Applied Catalysis B: Environmental, 37, 187-196, 2002.


Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., and Gonzaa Lez Beca, C. G., “Reactive Dyes Removal From Wastewaters by Adsorption on Eucalyptus Bark: Variables That Define the Process,” Water Research, 33, 4, 979-988, 1999.



Muruganandham, M., and Swaminathan, M., “Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process,” Dyes and Pigments, 68, 133-142, 2006.


Nevim, S., Arzu, H., Gulin, K., and Zekiye, C., “Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical prediction of the intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, 146, 189-197, 2002.


Nevim, S., Arzu, H., Gulin, K., and Zekiye, C., “Prediction of primary intermediates and the photodegradation kinetics of 3-aminophenol in aqueous TiO2 suspensions,” Journal of Photochemistry and Photobiology A: Chemistry, 139, 225-232, 2001.


Qinghong, Z., Lian, G., and Guo, J., “Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis,” Applied Catalysis B: Environmental, 26, 207-215, 2000.

Raoul, Z., “Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review,” Advances in Colloid and Interface Science, 97, 205-253, 2002.


Ryu, A., Kazuhiro, S., and Hironori, A., “Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation,” Chemical Physics Letters, 362, 441-444, 2002.


Ryu, A., Kazuhiro, S., and Hironori, A., “Significant influence of solvent on hydrogen production from aqueous I3-/I- redox solution using dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation,” Chemical Physics Letters, 379, 230-235, 2003.


Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., and Murugesan, V., “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials & Solar Cells, 77, 65-82, 2003.


Sanchez, E., and Lopez, T., “Effect of the preparation method on the band gap of titania and platinum- titania sol-gel materials,” Materials Letters, 25, 271-275, 1995.


Santosh, K. S., Priyabart, M., and Kulamani, P., “Physico-chemical characterisation and photocatalytic activity of nanosized SO42−/TiO2 towards degradation of 4-nitrophenol,” Journal of Molecular Catalysis A: Chemical, 198, 277-287, 2003.

Serpone, N., Marutamuthu, P., Pichat, P., Perlizzetti, E., and Hidaka, H. “Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors,” Journal Photochemistry and Photobiology A: Chemistry, 85, 247-255, 1995.
Seung-Min, O., and Takamasa, I., “Preparation of pure rutile and anatase TiO nanopowders using RF thermal plasma,” Thin Solid Films, 457,186-191, 2004.


Skoog, D. A., and D. M. West, “Fundamentals of Analytical Chemistry,” CBS College Publishing 4th edition, 528-529, 1994.


Sokmen, M., Allen, D. W., Hewson, A. T., and Clench, M. R., “Photocatalytic oxidative degradation of 2-methylthiophene In suspensions of TiO2: identification of intermediates and degradation pathways,” Journal of Photochemistry and Photobiology A: Chemistry, 141, 63-67, 2001.


Sonawane, R. S., Hegde, S. G., and Dongare, M. K., “Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating,” Materials Chemistry and Physics, 77, 744-750, 2002.


Sonawane, R. S., Kale, B. B., and Dongare, M. K., “Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol–gel dip coating,” Materials Chemistry and Physics, 85, 52-57, 2004.


Toshiya, W., Shigemichi, F., Masahiro, M., Akira, F., and Kazuhito, H., “Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass,” Journal of Sol-Gel Science and Technology, 19, 71-76, 2000.


Tsunehiro, T., Kentaro, T., Takashi, Y., Sakae, T., Satohiro, Y., and Takuzo, F., “TiO2/SiO2 photocatalysts at low levels of loading: preparation, structure and photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, 148, 277-281, 2002.




Vincenzo, A., Claudio, B., Alessandra, B. P., Elisa, G. L., Vittorio, L., Sixto, M., Giuseppe, M., Leonardo, P., Marco, P., and Edmondo, P., “Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation,” Chemosphere, 49, 1223-1230, 2002.


Wang, C., Wang, X., Xu, B. Q., Zhao, J., Mai, b., Peng, P., Sheng, G., and Fu, J., “Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation,” Journal of Photochemistry and Photobiology A: Chemistry, 168, 47-52, 2004.


William, D., and Callister, Jr., “Materials Science and Engineering an Introduction,” John Wiley and Sons, Inc. 6th edition, Hoboken, 2003.


Wu, C. H., “Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems,” Chemosphere, 57, 601-608, 2004.


Yang, H., Zhang, D., and Wang, L., “Synthesis and characterization of tungsten oxide-doped titania nanocrystallites,” Materials Letters, 57, 674-678, 2002.


Yeber, M. C., Jaime, R., Juanita, F., Nelson, D., and Mansilla, H. D., “Photocatalytic degradation of cellulose bleaching e.uent by supported TiO2 and ZnO,” Chemosphere, 41, 1193-1197, 2000.


Yoshimi, T., and Motohiro, S., “Effects of Heat Treatment on Photocatalytic Property of Sol-Gel Derived Polycrystalline TiO2,” Journal of Sol-Gel Science and Technology, 22, 83-89, 2001.





中文部分
王博正,“以溶膠凝膠法製備穩定分散之奈米級二氧化鈦光觸媒”, 國立台北科技大學材料及資源工程研究所,碩士論文,2004。

李志偉、劉森源、張庭瑞譯,Lawrence H. Van Vlack原著“材料科學與工程”,第六版,文京圖書有限公司,台北市,2001。

呂宗晰、吳偉宏,“奈米科技與二氧化鈦光觸媒”,科學發展雜誌,第376期,2004。

呂宗晰,“圖解奈米科技與光觸媒”,商周出版社,台北市,2003。

余樹楨,“晶體之結構與性質”,第五版,渤海堂文化事業有限公司,台北市,2000。

侯文哲,“結合半導體催化劑光催化降解水溶液中4-氯酚”,國立台灣大學環境工程研究所,碩士論文,2002。

染整技術顧問服務中心,“九十四年九月我國染料進出口量值統計表”,染化雜誌,第256期,2006。


染整技術顧問服務中心,“由染料觀環境問題的對應措施”,染化雜誌,第247期,2005。
高年信,“染整業廢水處理技術改善”,紡織染整業廢水改善及處理技術研討會,經濟部工業局,1999。

許招墉,“物理光學,俊傑書局股份有限公司,台北市,2002。

陳慧英、黃定加、朱泰億,“溶膠凝膠法在薄膜製備上之應用”,化工技術,第七卷,第十一期,1999。

傅泀翰,“以改質光觸媒處理二氯甲烷之研究”,國立成功大學環境工程研究所,碩士論文,2004。

傅俊豪,“以溶膠凝膠法製備二氧化鈦粉末及其物性探討”,國立台北科技大學材料及資源工程研究所,碩士論文,2005。

董建岳,“奈米孔洞無機材料之製備”,工研院化工所化工組製程方法研究室,2004。

蔡丕樁、蔡明雄、陳文照、廖金喜編譯,Donald R. Askeland原著,“材料科學與工程”,第三版,全華科技圖書股份有限公司,台北市,1999。

樊美公,“光化學基本原理與光子學材料科學”,科學出版社,北京,2001。


蔡金津,“奈米顆粒及薄膜之溶膠-凝膠技術”,化工資訊,十一月,16-21,2001。

謝光裕,“染整技術新動向”,染化雜誌,256期,2006。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊