跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/03/01 16:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴冠麟
研究生(外文):Kuan-Lin Lai
論文名稱:微波作用對晶背研磨廢水處理效能之研究
論文名稱(外文):Effects of Microwave on Backside Grinder Wastewater Treatment
指導教授:萬騰州萬騰州引用關係
指導教授(外文):Terng-Jou Wan
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:185
中文關鍵詞:微波晶背研磨廢水混凝沉澱逆滲透
外文關鍵詞:MicrowoveBackside grindercoagulation setting
相關次數:
  • 被引用被引用:2
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
晶背研磨廢水中含有大量不易沉降且高穩定性之奈米級懸浮顆粒,因而造成濁度偏高及處理效果不彰。因此,研究微波作用所具有物化特性是否具有增進廢水混凝後沉澱及後續逆滲透處理後回收再利用之效能與潛力。
本研究以800W;2450MHz之微波作用,對晶背研磨廢水進行下列探討:(1)微波作用對廢水粒子特性之影響。(2)微波作用對化學混凝後沉澱之影響。(3)微波作用於逆滲透處理系統之影響。藉由不同微波作用的程序,評估各處理程序,是否具有正面效能之提升,並希望藉此能夠降低處理之負荷。
結果顯示,微波作用後水中之研磨粒子以SEM及 TEM 顯微影像觀察後可發現粒子群會隨著微波作用越久而鬆散,而使得較大的顆粒群( 10 μm ~ 20 μm ),因微波作用而鬆散為較小的顆粒群( 2 μm ~ 5 μm );而其溫度及導電度會隨微波時間越長及其作用水樣體積越小而呈線性的上升。而其濁度、pH之變化較不明顯,而表面張力下降約10.0% ~ 16.5% 之間。
於微波作用於混凝後沉澱之影響,以水樣體積500mL;微波作用時間為(0 ~ 60 sec;以10 sec為間隔),最後於不同沉降時間(0 ~ 120 min),取其上澄液作分析。結果發現微波作用後,可形成較大的膠羽,增進沉降效率並縮短沉降時間,且以微波作用20sec之效果最為佳,估計可縮短沉降時間約6倍。但微波作用時間超過40sec其沉降效能反而變差,因此若控制微波作用時間於20 ~ 30 sec,溫度約在30 ~ 40 ℃,方可有效增進混凝後沉澱之效能。
微波作用於逆滲透處理系統的研究方面,以不同微波作用時間(0~721sec;以103sec為間隔),於40NTU、5L的晶背研磨廢水,再通入逆滲透處理系統。可發現微波作用後之水樣,於過濾後的熱能損耗較小,且其濾速可由原先的2.25 ml/sec增加至微波作用後的4.61 ml/sec。回收率方面,亦可由原先的28%增加至微波作用後的48%。並保有對逆滲透後滲透液的品質。
Backslide grinder wastewater, in which a large amount of high stability nano-particles were difficult to precipitate, had its high turbidity and was not treated effectively. Therefore, this present study aimed to investigate the effect of microwave heating on wastewater coagulation and the follow-up treatment of reverse osmosis (for reuse).
In this study, microwave heating (800W;2450MHz) was employed to investigate: (1) the effect of microwave heating on particle characteristics of wastewater, (2) the effect of microwave heating on coagulation , and (3) the effect of microwave heating on treatment of reverse osmosis for reuse. Besides, different processes were used to evaluate their improvement of positive effectiveness and were hoped to reduce the load of treatment.
The results had shown that observed with SEM and TEM, large size particles (10-20μm) became loose along with the longer heating time; as for small size ones (2-5μm), their temperature and conductivity arose linearly along with the longer time of treatment and the smaller water sample volume. Besides, the change of turbidity and pH value was not apparent, and the surface energy dropped nearly between 10.0% and 16.5%.
In terms of coagulation, this experiment was conducted with 500mL of water sample volume and 0 ~ 60 seconds of microwave heating, and finally its supernatant liquor was analyzed at different time point (0 ~ 120 min )of precipitation. The result showed that floc aggregates aggrandized by the treatment of microwave heating; the effectiveness of precipitation increased and the time of precipitation decreased. At best, the time of precipitation was estimated to be as short as six times primarily with 20 seconds of microwave heating; however, the efficiency of precipitation decreased with more than 40 seconds. Thus, it was suggested that the time of microwave heating was controlled between 20 and 30 seconds and the temperature of sample water between 30 and 40 ℃.
In terms of treatment of reverse osmosis, this experiment was conducted with 40NTU, 500mL of sample water at different time point (0~721 sec) of microwave heating, and the water was drew into RO directly to be treated. It was found that its heat energy loss was less, and its rate of filtering increased from 2.25ml/sec to 4.61 ml/sec. In addition, the recovery of efficiency also increased from 28% at first to 48%, and maintained its quality.
目錄
摘 要 I
ABSTRACT III
誌 謝 V
第一章 緒論 1
1.1 研究緣起及背景 1
1.2 研究目的 3
1.3 研究架構與流程 4
第二章 理論基礎與文獻回顧 6
2.1微波(電磁)原理及技術應用 6
2.1.1微波(電磁)原理 7
2.1.1.1微波(電磁)作用對水之影響及探討 9
2.1.1.2 微波加熱法與一般傳統加熱法之比較 11
2.1.1.3 微波作用與物質介電因數之關係 12
2.1.1.4 微波所具有的物理特性 15
2.1.2微波加熱於工業應用的特點 18
2.1.3微波技術於環境工程上的應用 19
2.2 晶背研磨原理及特性分析 23
2.2.1 晶背研磨原理及設備流程 23
2.2.2 晶背研磨特性組成分析 26
2.3 化學混凝處理技術之發展 31
2.3.1 混凝理論 31
2.4 逆滲透過濾原理及應用 39
2.4.1薄膜種類及處理技術 39
2.4.2逆滲透原理及技術 43
2.4.3影響逆滲透過濾之參數 49
第三章 研究設備及方法 51
3.1 實驗處理對象及廢水來源 51
3.1.1採樣流程及內容 52
3.2 實驗設備及儀器 53
3.3 模廠實驗方法及流程 62
3.3.1 研究方法與方向 62
3.3.2 模場處理程序及操作條件 65
3.3.3 杯瓶試驗 67
第四章 結果與討論 73
4.1 晶背研磨廢水水質特性及分析 73
4.1.2 微粒性質分析 78
4.2 微波作用對晶背研磨廢水特性之影響 84
4.2.1微波作用對廢液pH、溫度、濁度之影響 85
4.2.2 微波作用對廢液導電度、表面張力之影響 88
4.3 微波作用對晶背研磨廢水混凝後沉澱效能之影響 92
4.3.1微波對混凝後沉澱濁度之影響 92
4.3.2微波作用對混凝後沉澱時間之影響 94
4.3.3微波作用對混凝後沉澱溫度之影響 100
4.3.4微波作用對混凝後沉澱膠羽大小之影響 101
4.3.5微波作用對混凝後沉澱pH、導電度與表面張力之影響 102
4.4 微波作用對廢水經RO處理效能之評估 105
4.4.1實驗水樣體積以及加熱時間參數之選定 106
4.4.2微波作用對廢水過濾後溫度續含能力之影響評估 108
4.4.3微波作用對廢水過濾濾速之影響評估 113
4.4.4微波作用對廢水經RO處理回收率之影響評估 117
4.4.5微波作用對廢水過濾後pH之影響評估 119
4.4.6微波作用對廢水過濾後導電度之影響評估 121
4.4.7微波作用對廢水過濾後濁度之影響評估 127
第五章 結論與建議 136
5.1結論 136
5.2建議 139
參考文獻

●外文文獻

1.Abu-Samia, A., Morris, J.S., Koirtyohann, S.R., (1975). Wet ashing of some biological samples in a microwave oven. Analytical Chemistry,47, 1475-1477.
2.Adhikari B, De D, Maiti S., (2000), Reclaimation and recycling of waste rubber. Progress in Polymer Science, 25: 909-948.
3.Adin, A. and T. Asano, (1998), The Role of Physical-Chemical Treatment in Wastewater Reclamation and Reuse, Water Science and Technology, Vol.37, No.10, pp.79-90.
4.C. Touris, D.W. DePaoli, J.T. Shor, M.Z.-C. Hu, T.-Y. Ying, (2001), Electrocoagulation for magnetic seeding of colloidal particles, Physicochemical and Engineering Aspects 177, pp.233-233.
5.Campbell, M. J., Walter, R. P., McLoughlin, R., and Knowles, C. J., (1993),Effect of temperature on protein conformation and activity during ultrafiltration, J. of Membrane Science, 78: 5-43.
6.Cha CY, Carlisle CT, (2001), Microwave process for removal and destruction of volatile organic compounds. Environmental Progress, 20(3):145-150.
7.Cha, C. Y.,(1995) Department of Chemical Engineering, University of Wyoming.
8.Chen G. W., Chang, I. L., Hung, W. T., and Lee, D. J., (1996), Regimes for Zone Setting of Waste Activated Sludge, Water Research, Vol.30, pp.1844-1850.
9.Chen L. Lai, Sheng H. Lin, (2003), Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication, Chemical Engineering Journal 95, pp.205-211.
10.Chen L. Lai, Sheng H. Lin, (2004), Treatment of chemical mechanical polishing wastewater by electrocoagulation : system performances and sludge settling characteristics, Chemosphere 54, pp.235-242.
11.Cheryan, M., (1986), Ultrafiltration Handbook , Technologic Publishing Company, Inc., PA.

12.Coss PM, Cha CY, (2000), Microwave regeneration of activated carbon used for the removal of solvents from vented air. Journal of Air and Waste Management Association, 50(4):529-535.
13.D Al-Doori, R Huggett, JF Bates, SC Brooks (1988), A comparison of denture base acrylic resins polymerized by microwave irradiation and by conventional water bath curing systems, Dent Mater, 4: 25-32.
14.D. James, D. Campbell, J. Francis, T. Nguyen, and D. Brady, (2000) “A Process for Efficient Treatment of Cu CMP Wastewater,” Semiconductor International online.
15.D.A. Jones, T.P. Lelyveld, S.D. Mavrofidis, and S.W. Kingman. (2002),Microwave Heating Application in Environmental Engineering-a review,Resources, Conservation and Recycling, 34: 75-90.
16.DeGenova, J. and Shadman, F., (1997), Recovery, Reuse, and Recycle of Water in Semiconductor Wafer Fabrication Facilities, Environmental Progress,Vol.16, No.4, pp.263-267.
17.Di PK, Chang DPY, (2001), Investigation of polychlorinated biphenyl removal from contaminated soil using microwave-generated steam. Journal of the Air & Waste Management Association, 51(4):482-488.
18.Edelstein WA, Iben IET, Muler OM, et al., (1994), Radio frequency ground heating for soil remediation: science and engineering. Environmental Progress, 13(4):247-252.
19.Gabriel, C., S. Gabriel, E.H. Grant, B.S.J. Halstead, and D.M.P. Mingos,(1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews; 27: 213–23.
20.Gordon C.C.Yang , Tsung-Yang, Shiou-Huei Tsai, (2003), Crossflow electro- microfiltration of oxide-CMP wastewater, Water Research 37, pp.785-792.
21.Guo J, Lua AC, (2000), Preparation of activated carbons from oilpalm stone chars by microwave induced carbon dioxide activation. Carbon, 38:1985-1993.
22.H. M. Kingston, and L. B. Jassie, (1998), Introduction to microwave sample preparation, American Chemical Society, Washington, DC, USA, 7-31.
23.Haitham Al-Qahtani, (1996), Effect of magnetic treatment on Gulf seawater, Desalination 107, pp.75-81.

24.Haque, K. E.(1999) “Microwave energy for mineral treatment processes-a brief review,” International Journal of Mineral Processing, 57, 1-24.
25.Heinzmann, B.,(1994), Coagulation and Flocculation of Stormwater from a Separate Sewer System - A New Possibility for Enhanced Treatment, Water Science and Technology, Vol.29, No.12, pp.267-278.
26.Hulya Yavuz, Serdar S. Celebi, (2000), Effects of magnetic field on activity of activated sludge in wastewater treatment, Enzyme and Microbial Technology 26, pp.22-27.
27.I. J. Barnabas, R. D. John, I. A. Fowlis and S. P. Owen(1995), “Extraction of Polycyclic Aromatic Hydrocarbons From Highly Contaminated Soil Using Microwave Energy”, Analyst, Vol.120, pp. 1897-1903.
28.J.M.D. Coey, Stephen Cass, (2000), Magnetic water treatment, Journal of Magnetism and Magnetic Materials 209, pp.71-74.
29.Jacques A. M. van Paassen, JoopC. Kruithof, Simon M. Bakker, Frank Schoonenberg Keqel, (1998), Integrated Multi-objective membrane systems for surface water treatment:pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment, Desalination 118, pp.239-248.
30.James, D., (2000), A Process for Efficient Treatment of Cu Copper CMP Wastewater, Semiconductor International, http://www.seconductor.net
31.Kingston,H. M.,Jassie, L. B., (1988), Introduction to microwavesample preparation, Washington, DC., 7-13.
32.Lagrega MD, Buckingham PL, Evans JC, (1994), Hazardous waste management.New York: McGraw-Hill.
33.Langenegger Bc, (1998), Treating materials, especially medical wastes. UK Patent 2320247 , June 17.
34.Lianfa Song, (1998), Flux decline in crossflow microfiltration ultrafiltration : mechanisms and modeling of membrane foulong, Journal of Membrane Science 139, pp.183-200.
35.Lidstrom, P., Tierney, J., Wathey, B., and Westman, J. (2001) “Microwaveassisted organic synthesis-a review,” Tetrahedron, 57, 9225-9283.
36.Ludlow-Palafox C, (1994), Microwave induced pyrolysis of plastic wastes management. New York : McGraw-Hill,March 20.

37.Maag, B., Boning, D., and Voelker, B., (2000), Assessing the Environmental Impact of Copper CMP, Semiconductor International, http://www.semiconductor.net.
38.Makoto Shoda, (1996), Effect of high magnetic field on microbial activities measured under a newly constructed superconducting magnet biosystem, Physica B 216, pp.409-411.
39.Menendez JA, Menendez EM, Garcia A, et al., (1999), Thermal treatment of activated carbons: a comparison between microwave and electric heating. Journal of Microwave Power and Electromagnetic Energy, 34(3):137-143.
40.Michael J. Matteson, Regina L. Dobson, Robert W. Glenn, Jr., Nagesh S. Kukunoor, William H. Waits Ⅲ. Eric J. Clayfield, (1995), Electrocoagulation and separation of aqueous suspensions of ultrafine particles, Physicochemical and Engineering Aspects 104, pp.101-109.
41.Mirafzal, G. A., Summer, J. M.,(2000) Microwave Irradiation Reactions: Synthesis of Analgesic Drugs. J. Chem. Educ., 77, 356.
42.Nakao, S. I., Kimura, S., and Nomura, T., (1987), Influence of feed temperature on ultrafiltration performance, 811-817.
43.Norman L M, Cha C Y. [J]. Chem. Eng. Comm. , (1996), 140: 87~110.
44.Pailhes M, (1987), Method and device for regenerating waste based on fusible polymers. FR Patent 2599665, December 11.
45.Parquet, E., Lin, Q.,(1997) Microwave Assisted Wolff-Kishner Reduction Reaction. J. Chem. Educ., 74, 1225.
46.RA Heddleson S Doores (1994), Factors affecting microwave heating of foods and microwave induced destruction of food borne pathogens - A review., J Food Prot, 57: 1025-1037.
47.S. Kobe, G. Drazic, P.J. McGuiness, J. Strazisar, (2001), The influence of the magnetic field on the crystallization form of calcium carbonate and the testing of a magnetic water-treatment device, Journal of Magnetism and Magnetic Materials 236, pp.71-76.
48.S. Zhang, R. B. H. Tan, 1 K. G. Neoh, and C. Tien, (2000), Electrofiltration of Aqueous Suspensions, Journal of Colloid and Interface Science 228, pp.393-404.

49.Sara Stemme , Lars Odberg , Martin Malmsten, (1999), Effect of colloidal silica and electrolyte on the structure of an adsorbed cationic polyelectrolyte layer, A:Physicochemical and Engineering Aspects 155, pp.145-154.
50.Sawyer,C.N.,and P.L.McCarty,(1978),Chemistry for Environmental Engineering. 3rdEd.,pp. 61-62.
51.Sheng H.Lin, Chung R yang, (2004), Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication, Journal of Hazardous Mayerials B108 pp.103-109.
52.Simon A. Parsons, Bao-lung wang, Simon J. Judd and Tom Stephenson, (1996), Magnetic treatment of calcium carbonate scale-effect of pH control, Wat. Res., Vol.31, No.2, pp.339-342.
53.Tai HS, Jou CJG. , (1998), Application of granular activated carbon packed-bed reactor in microwave radiation field to treat phenol. Chemosphere, 37(11):2685-2698.
54.Tambo, N. and T. Kamei, (1998) Coagulation and Flocculation on Water Quality Matrix, Water Science and Technology, Vol.37, No.10, pp.31-41.
55.Tata, Beone F, (1995), Hospital waste sterilization – a technical and economic comparison between radiation and microwave treatments. Radiation Physics and Chemistry, 46(4-6): 1153-1157.
56.Thomas Rheinlander, Roman Kotitz, Werner Weitschies, Wolfhard Semmler, (2000), Magnetic fractionation of magnetic fluids, Journal of Magnetism and Magnetic Materials 219, pp.219-228.
57.Thostenson, E. T., and Chou, T. W. (1999) Microwave processing:fundamentals and applications, Composites: Part A, 30, 1055-1071.
58.Tom Weigert, Justus Altmann, Siegfried Ripperger, (1999), Crossflow electrofiltration in pilot scale, Journal of Membrane Science 159, pp.253-262.
59.Van Wyk EJ, Bradasaw SM, de Swardt JB., (1997), The dependence of microwave regeneration of activated carbon on time and temperature. Journal of Microwave Power and Electromagnetic Energy, 33(3):151-157.

60.Walkiewicz, J.W., G. Kazonich, and S.L. MacGill. (1998). Microwave heating characteristics of minerals and compounds, Minerals and Metallurgical Processing, 39: 39-42.
61.W.N. Cottingham, D.A. Greenwood. (1991). Electricity and magnetism Cambridge ;Cambridge University Press,.New York .
62.Y. H. Weng and K. C. Li, (2002) Electrically Enhanced Crossflow Membrane Filtration for Treatment of Water Containing Humic Acid: A Preliminary Study, Proceedings of the12th KAIST-KU-NTU-NUS Symposium on Environmental Engineering, pp. 95-103,26-29 .
63.Z. Al-Qodah, W. Lafi, (2001), Modeling of antibiotics production in magneto three-phase airlift fermenter, Biochemical Engineering Journal 7, pp.7-16.
























●中文文獻

1.丁志華、戴寶通(2000),「半導體廠超純水簡介」,毫微米通訊,第7卷,第4期,p.31-39。
2.台歐企業股份有限公司(1996),中華水電冷凍空調,給水篇,磁化水科技的原理與應用,第157期。
3.左煒憶(2000),「以電滲透及流線電位決定薄膜之膜孔界達電位」,中原大學化學工程研究所論文。
4.谷腰欣司 (2005),「圖解電波的構造」,世茂出版社,台北。
5.吳宏基(2000),「以超過濾薄膜結合混凝前處理回收半導體工業之研磨廢水」,國立交通大學環境工程所論文。
6.李家榮、何思縈 (2006),「磁化對半導體化學機械研磨廢水混凝處理成效影響之探討」,國立雲林科技大學環境與安全衛生工程系。
7.李惠嬌 (2006),「磁化效應對晶背研磨廢水混凝沉澱處理影響之研究」,國立雲林科技大學環境與安全衛生工程系碩士論文。
8.林欣慧(2004),「以UF配合鎂鹽前處理移除CMP廢水中矽酸之研究」,國立交通大學環境工程系所論文。
9.林鴻偉 (2005),「磁化效應對晶背研磨廢水處理效能影響之研究」,國立雲林科技大學環境與安全衛生工程系碩士論文。
10.金欽漢,戴樹珊,黃卡瑪 (1999),微波化學,北京:科學出版社。
11.紀柏亨,楊末雄,(1998),「微波消化之方法應用」,Chemistry(The Chiness Chem. SOC. Taipei)Vol.56,NO.4,pp.269~284.Kingman, S.W., and N.A.
12.倪振鴻 (2002),「厭氧薄膜生物處理系統開發先導性研究」,第二十八屆廢水處理技術研討會。
13.高建玲 (2001),「微波加熱與微波萃取教學與實驗教材設計」,國立高雄師範大學。
14.張俊彥(1996),積體電路製程及設備技術手冊,中華民國經濟部技術處。
15.張鼎張,鄭晃忠,楊正杰(1998),銅金屬化製程簡介,毫微米通訊,第五卷第三期。
16.莊達人(1998),「VLSI 製造技術」,高立圖書,台北。

17.許桂銘 (2001),「飛灰輕質骨材製程及其性質之研究」,國立台灣科技大學工程技術研究所碩士論文。
18.陳志邦(2003),「分子動力學模擬水分子團簇受磁場之影響」,成功大學機械工程研究所碩士論文,台南市。
19.陳佳欣(2003),「Dead-end式薄膜微過濾處理化學機械研磨廢水:前處理方式之評估及其影響」,國立交通大學環境工程系所論文。
20.陳彥旻(2002),「半導體業化學機械研磨廢水回收處理再利用技術研究」,國立成功大學環境工程學系碩博士班論文。
21.陳啟明 (2004),「NF薄膜程序應用於自來水淨水工程之探討」,國立屏東科技大學,食品科學研究所。
22.章夢軒 (1996),「電場作用下之掃流過濾特性」,中原大學化學工程研究所碩士論文。
23.黃志彬(2001),「半導體製造業化學機械研磨廢水特性及其處理」,工業污染防治,第79期,p.125~p.159。
24.黃信仁(2001),「半導體工廠化學機械研磨廢水之處理研究」,國立台灣科技大學化學工程研究所碩士論文。
25.黃信仁、劉志成、曾國佑(2001),「以超過濾處理半導體工廠化學機械研磨(CMP)廢水之研究」,第二十六屆廢水處理技術研討會論文集。
26.黃進芳 (1994),微波工程實習,全華出版社,臺北市。
27.黃進芳 (2005),微波工程,五南圖書出版僱份有限公司,台北市p.41~p.43。
28.楊宗儒(2001),「半導體化學機械研磨廢水之處理與回收」,國立交通大學環境工程研究所碩士論文。
29.楊金鐘、楊叢印、蔡秀惠(2000),「利用外加電場之掃流式微過濾處理半導體業晶圓廠化學機械研磨廢水之初步研究」,第二十五屆廢水處理研討會論文集。
30.楊喬宇(2003),「探討哈耳電壓與水磁化變數之關係及其對水泥砂漿抗壓強度之影響」,中央大學土木工程研究所碩士論文,中壢市。
31.楊澤偉、王淑君、溫明龍 (2006),「微波對混凝膠羽沉澱作用影響之研究」,國立雲林科技大學環境與安全衛生工程系。

32.張漢昌 (2001),廢水處理(修訂版),文京圖書有限公司,台北。
33.萬騰州,花建佑(2000),「外加交流電對活性污泥生物效應」,雲林科技大學環境與安全工程學系。
34.趙毅、林文江(1999),“利用微過濾技術處理研磨廢水”,半導體洗淨節水及環境技術國際研討會論文集。
35.劉茱娥等 (1998), ”逆滲透” ,膜分離技術,化學工業出版社,184-208
36.劉訓瑜(1999),「化學機械研磨廢水混凝沈澱效能之評估」,國立交通大學環境工程研究所碩士論文。
37.劉志成(2002),「以超過濾處理半導體工廠化學機械研磨(CMP)廢水之研究」,工業廢水物化處理新技術講習會論文集,A01 部份,新竹市。
38.歐陽嶠暉(2000),下水道工程學,長松文化公司。
39.蔣本基(1988),工業廢水逆滲透處理,經濟部工藥污染防治技術服務團。
40.鄭文桐、黃山峰(1999),「超微粒子分散技術與其應用概況」,Journal of Chin Colloid & Interface Society, Vol.22,p.77-92。
41.鄧宗禹、黃志彬、邱顯盛(2002),化學機械研磨費液之處理與回收,毫微米通訊,第九卷第一期。
42.蕭志清(1997),「磁化水科技的原理與應用」,化工技術,50,p.166~170。
43.謝政寧(2004),精密光電元件之表面與次表面分析,國防大學中正理工學院。
44.羅金生(2001),「半導體廠化學機械研磨(CMP)廢水回收再利用可行性評估」,國立台灣大學環境工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top