跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/03/04 13:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游千慧
研究生(外文):Hui-Chien Yu
論文名稱:不同有機基質對厭氧好氧活性污泥系統厭氧代謝行為之影響
論文名稱(外文):The effects of different organic substrates on anaerobic metabolism of sludge from an anaerobic-oxic activated sludge system
指導教授:張維欽張維欽引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:137
中文關鍵詞:硝酸鹽葡萄糖PHAs醋酸丙酸活性污泥
外文關鍵詞:NitrateGlucosePropionateAcetatePHAsActivated sludge
相關次數:
  • 被引用被引用:4
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
厭氧好氧活性污泥系統經長時間的發展已證實具有加強除磷的功能,惟該系統常因某些因素造成除磷效果不彰甚至喪失,肝醣蓄積菌 (Glycogen Accumulating Organisms, GAO) 與磷蓄積菌 (Phosphate Accumulating Organisms, PAO) 的競爭被視為最主要的原因之一。對一般廢水處理廠而言,進流水中的有機物種類極為複雜,因此進流的各種有機物是否對系統除磷效果造成影響,應有進一步探討之必要。本研究即在以醋酸、丙酸、及葡萄糖為基質探討 PAO 及 GAO 厭氧代謝行為,並以不同濃度之各種基質進行實驗藉以求取其動力參數值,及計算其計量關係變化。
實驗結果顯示碳源為醋酸、葡萄糖、丙酸時, PAO 之最大基質攝取率依序為 0.58、4.17、及1.6 (mg/g MLSS/min);GAO最大基質攝取率分別為 0.47、3.40、1.47 (mg/g MLSS/min);而 PAO 之半飽和常數 KS 為 78.06、211.30、 47.85 (mg/L),GAO 之 KS 分別為 106.98 、178.65、70.73 (mg/L)。而當以丙酸為碳源時,發現高濃度丙酸對 PAO 與 GAO 皆有攝取基質抑制情形產生,分別計算 PAO 及 GAO 之抑制常數 K¬SI,各為 124.42 與 176.18 (mg/L)。
計量關係部份,當以醋酸為碳源時,不同醋酸濃度下 PAO 與 GAO 之△PHA/△HAc 實驗值與理論值皆相當接近。惟 PAO 之 △PHA/△HAc 比值隨醋酸濃度增加略呈現先增加再減少的趨勢;然而 GAO 之 △PHA/△HAc並不會受外部基質濃度影響。而 PAO 及 GAO 之 △PHA/△Glucose 比值隨葡萄糖濃度增加而有下降趨勢。當以丙酸 (PA) 為碳源時,隨丙酸濃度增加, PAO與GAO計量關係皆會產生變化, PAO 之 △PHA/△PA 呈現逐漸上升的情形,而 GAO 之 △PHA/△PA 隨濃度增加而有先上升後下降之趨勢。
硝酸鹽經實驗證實會影響磷蓄積菌在厭氧段的代謝行為,進而使系統除磷效果降低,然而,對於在系統中與 PAO 競爭之肝醣蓄積菌是否在厭氧段亦受硝酸鹽之影響,其相關文獻明顯較少。因此本實驗另嘗試以低磷負荷厭氧好氧活性污泥系統所馴養出之富含肝醣蓄積菌污泥,進行一連串批次實,探討不同硝酸鹽濃度對厭氧狀態下肝醣蓄積菌代謝行為之影響。實驗結果顯示,硝酸鹽明確地會使 GAO 在厭氧段降低PHA之蓄積量,惟其仍受初始有機基質濃度之影響。由於脫硝菌 (Denitrifying organism, DNO) 對基質的競爭力優於GAO,當外部基質濃度低而硝酸鹽存在時,DNO與GAO間之基質競爭易取得優勢,因此硝酸鹽濃度越高,GAO之PHA蓄積量明顯降低;亦即,GAO之厭氧代謝受到硝酸鹽存在之影響。然而當外部基質濃度較高時,雖硝酸鹽濃度增加時,DNO脫硝作用持續升高,然而因仍有多餘的基質可供GAO攝取,因此硝酸鹽對GAO之PHA蓄積量之影響相對較小,即所造成的之代謝影響亦較小。
Anaerobic-oxic (A/O) activatedsludge system has been experimentally confirmed to be capable of removing phosphorous from wastewater. But the phosphorous removal ability of the A/O system may be hindered for some reasons. The competition between GAO (Glycogen Accumulating Organisms) and PAO (Phosphate Accumulating Organisms) is considered to be one of the most important reasons. The organic compounds in the influent of wastewater treatment plant is very complicated. Therefore it is necessary to investigate how the different organics affect the efficiency of phosphorous removal. This study investigated the anaerobic metabolism of PAO and GAO by using acetate, propionate, and glucose as the substrate. Besides, the kinetic parameters and stochimetry of these substrates were also obtained.
The results showed that when using acetate, glucose, and propionate as substrate, the qm of PAO are 0.58, 4.17, and 1.6 (mg/g MLSS/min), and the qm of GAO are 0.47, 3.40, and 1.47 (mg/g MLSS/min); the KS of PAO are 106.98, 178.65, and 70.73 (mg/L), and the KS of GAO are 106.98, 178.65, and 70.73 (mg/L) respectively. When using propionate as substrate, it is showed that high concentration of propionate inhibits the substrate uptake of PAO and GAO. The KSI of PAO and GAO were estimated to be 124.42 and 176.18 (mg/L) respectively.
The experimental results of △PHA/△HAc of PAO and GAO are close to theoretic values. But the △PHA/△HAc value of PAO are increasing first and then reducing with the increasing acetate concentration; however the △PHA/△HAc value of GAO is irrelevant to substrate concentration. And the △PHA/△HAc value of PAO and GAO are reducing with the increasing of the glucose concentration. When using propionate as carbon source, the △PHA/△HAc value of PAO is increasing gradually, and the △PHA/△HAc value of GAO is increasing first and then reducing.
Nitrate has been confirmed to affect the metabolism of PAO in anaerobic phase, and therefore reduce the efficiency of phosphorus removal. However, less papers investigate the effects of nitrate on the metabolism of GAO in anaerobic phase. This study investigate the effects of different concentration of nitrate on metabolism behavior of GAO. The result showed that nitrate reduced the accumulation of PHA of GAO, and the accumulation of PHAs is affected by the initial concentration of organic substrate. Because the DNO is better than GAO on substrate competition, if the concentration of the substrate is low and nitrate exists, DNO may outcompete GAO in the system. Besides, high concentration of nitrate reduces the accumulation of PHAs of GAO, that is, the metabolism of GAO in the anaerobic phase may be affect by nitrate. However, when the concentration of substrate is high, because there is still redundant substrate for GAO uptaking, less effects of nitrate on PHAs accumulation of GAO were observed.
中文摘要 --------------------------------------------------------------------Ⅰ
英文摘要 --------------------------------------------------------------------Ⅱ
誌謝 --------------------------------------------------------------------Ⅴ
目錄 --------------------------------------------------------------------Ⅵ
表目錄 --------------------------------------------------------------------X
圖目錄 --------------------------------------------------------------------XI

第一章 前言 -------------- -------------------------------------------------1
1.1 研究緣起 ------------------------------------------------------------1
1.2 研究目的及內容 ------------------------------------------------------3
第二章 文獻回顧 ------------------------------------------------------------5
2.1 加強生物除磷系統 ----------------------------------------------------5
2.1.1 生物除磷原理 -------------------------------------------------5
2.1.2 肝醣蓄積菌的發現及其特性 -------------------------------------6
2.1.3 磷蓄積菌與肝醣蓄積菌型態差異及相互關係 -----------------------8
2.2 加強生物除磷系統之生化模式 -----------------------------------------10
2.2.1 以醋酸為單一碳源之EBPR代謝機制 -------------------------------10
2.2.2 以其他基質為單一碳源代謝機制 --------------------------------16
2.3 各種碳源與其合成之PHA組成 ------------------------------------------21
2.3.1 醋酸 --------------------------------------------------------21
2.3.2 丙酸 --------------------------------------------------------22
2.3.3 葡萄糖 ------------------------------------------------------22
2.4 肝醣蓄積菌代謝模式及發展 -------------------------------------------24

第三章 實驗設備與方法 -----------------------------------------------------25
3.1 實驗規劃 -----------------------------------------------------------25
3.1.1 實驗流程架構 ------------------------------------------------25
3.2 批次實驗 -----------------------------------------------------------26
3.2.1 不同碳源對活性污泥系統厭氧代謝行為影響 ---------------------26
 3.2.1.1 實驗計畫 -----------------------------------------------26
 3.2.1.2 實驗步驟 -----------------------------------------------27
3.2.2 硝酸鹽對GAO厭氧代謝行為之影響 -------------------------------28  3.2.2.1 實驗計畫 ------------------------------------------------28
 2.2.2.2 實驗步驟 ------------------------------------------------28
3.3 實驗設備 -----------------------------------------------------------29
3.3.1 富含磷蓄積菌及肝醣蓄積菌污泥SBR模廠 -------------------------29
3.3.2 富含肝醣蓄積菌污泥連續式模廠 --------------------------------29
3.4 分析方法與設備 -----------------------------------------------------32
3.4.1 分析方法 ----------------------------------------------------32
3.4.2 分析設備 ----------------------------------------------------33

第四章 結果與討論 ---------------------------------------------------------34
4.1 SBR模廠水質監測 ----------------------------------------------------34
4.1.1 富含磷蓄積菌污泥SBR模廠 -------------------------------------34
4.1.2 富含肝醣蓄積菌污泥SBR模廠 -----------------------------------34
4.1.3 富含肝醣蓄積菌污泥連續式模廠 --------------------------------34
4.2 不同碳源對活性污泥系統厭氧代謝行為影響 -----------------------------36
4.2.1 以醋酸為外部碳源 --------------------------------------------36
4.2.1.1 不同醋酸濃度下PAO、GAO厭氧代謝行為 ----------------------36
4.2.1.2 磷蓄積菌及肝醣蓄積菌動力特性探討 ------------------------38
4.2.1.3 磷蓄積菌及肝醣蓄積菌計量關係探討 ------------------------41
4.2.2 以葡萄糖為外部碳源 ------------------------------------------43
4.2.2.1 不同葡萄糖濃度下PAO、GAO厭氧代謝行為 --------------------43
4.2.2.2 磷蓄積菌及肝醣蓄積菌動力特性探討 ------------------------45
4.2.2.3 磷蓄積菌及肝醣蓄積菌計量關係探討 ------------------------48
4.2.3 以丙酸為外部碳源 --------------------------------------------50
4.2.3.1 不同基質濃度下PAO、GAO厭氧代謝行為 ----------------------50
4.2.3.2 磷蓄積菌及肝醣蓄積菌動力特性探討 ------------------------53
4.2.3.3 磷蓄積菌及肝醣蓄積菌計量關係探討 ------------------------58
4.2.4 不同碳源對EBPR系統綜合比較------------------------------------60
4.2.5 不同碳源種類之PHA計量關係及組成變化 -------------------------63
4.2.5.1 以醋酸為單一碳源 ----------------------------------------63
4.2.5.2 以丙酸為單一碳源 ----------------------------------------69
4.2.5.3 以葡萄糖為單一碳源 --------------------------------------71
4.2.6 不同碳源濃度下之PHA組成變化 ---------------------------------73
4.2.6.1 以醋酸為單一碳源 ----------------------------------------73
4.2.6.2 以丙酸為單一碳源 ----------------------------------------76
4.2.6.3 以葡萄糖為單一碳源 --------------------------------------78
4.2.7 不同濃度碳源下碳轉換之變化 ----------------------------------80
4.2.7.1 PAO以醋酸為碳源 -----------------------------------------80
4.2.7.2 PAO以丙酸為碳源 -----------------------------------------82
4.3 硝酸鹽對GAO厭氧代謝行為之影響 --------------------------------------83
4.3.1 GAO厭氧代謝行為 ---------------------------------------------83
 4.3.1.1 無硝酸鹽之厭氧代謝行為 ----------------------------------83
 4.3.1.2 含硝酸鹽之厭氧代謝行為 ----------------------------------83
4.3.2 GAO之PHA蓄積變化---------------------------------------------85
4.3.2.1 醋酸對PHA累積量的影響 -----------------------------------85
4.3.2.2 硝酸鹽對PHA累積量的影響 ---------------------------------87
4.3.3 GAO脫硝作用 -------------------------------------------------89

第五章 結論與建議 ---------------------------------------------------------90
5.1 結論 ---------------------------------------------------------------90
5.2 建議 ---------------------------------------------------------------93

參考文獻 --------------------------------------------------------------------94
附錄A-C 各濃度之碳源批次實驗圖 --------------------------------------------105
附錄D 肝醣蓄積菌添加不同濃度之醋酸與硝酸鹽批次實驗圖 --------------------116
1.Abu-Ghararah, Z.H. and Randall, C.W. (1991) The effect of organic compounds on biological phosphorus removal. Wat.Sci.Tech., 23, 585-594.
2.Arun V., Mino T. and Matsuo T. (1988) Metabolic pathway of anaerobic uptake of amino acids in biological phosphorus removal process. Adv. Water, Pollut. Cont.,pp. 313±320. Water Pollution Control in Asia, Pergamon Press.
3.Arun V., Mino T. and Matsuo T. (1988b) Metabolism of carboxylic acids located in and around the glycolytic pathway and the TCA cycle in the biological phosphorus removal process. Water Sci. Tech. Brighton 21, 363±374.
4.Arun V., Mino T. and Matsuo T. (1989) Metabolism of glucose during the anaerobic phase of the enhanced biological phosphorus removal process. Int. Conf. on Water and Wastewater, Beijing
5.Arvin E, Kristensen GH. 1985. Exchange of organics, phosphate and cations between sludge and water in biological phosphorus and nitrogen removal processes. Water Sci Technol 17:147-162.
6.Auling G., Pilz F., Busse H.-J., Karrasch S., Streichan M. and Schon G. (1991) Analysis of the polyphosphate-accumulating microflora in phosphorus eliminating, anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of acinetobacter spp. Appl. Environ. Microbial. 57, 3685-3692.
7.Barnard J. L. (1975) Biological nutrient removal without the addition of chemicals. Water Res. 9, 485-490.
8.Barnard J. L. (1992) Design of prefermentation process. In Design and retrofit of wastewater treatment plants for BNR, eds C. F. Randall, J. L. Barnard and H. D. Stensel, pp. 85±95. Technomic Publishing Company.
9.Barnard JL. 1976. A review of biological phosphorus removal in the activated sludge process. Water SA 2:126-144.
10.Barnard, J.L., Stevens, G.M., and Leslie, P.J. (1985). Design strategies for nutrient removal plant. Wat. Sci. Tech. 17(11/12) 233-242.
11.Beatons, D., Vanrolleghem, P.A., vanLoosdtrecht, M.C.M. and Hosten, L.H. (1999) Temperature effects in bio-P removal. Wat. Sci. Tech. 39 (1) 215-225.
12.Becker, Reece and Poenie (1996) The World of the Cell 3rd Edition. The Benjamin Cummings Publishing Company. Menlo Park CA.
13.Bitton G. Wastewater Microbiology, 1st Ed, (ed. Mitchel), Wiley-Lys, New York,US. (1994).
14.Blackall L.L., Burrell P. C., Gwilliam H., Bradford D., Bond P. L. and Hugenholtz P., 1998, ”The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities,” Wat. Sci. Tech. 37(4-5), 451-454.
15.Bond P. L., Erhart R., Wagner M., Keller J. and Blackall L. L., 1999a, “Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems,” Appl. Environ. Microbiol. 65(9), 4077-4084.
16.Bond P. L., J. Keller J. and Blackall L. L., 1999b, “Bio-P and non-bio-P bacteria identification by a novel microbial approach,” Wat. Sci. Tech. 39(6), 13-20.
17.Bond P., Hugenholtz P., Keller J. and Blackall L. (1995) Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludge from sequencing batch reactor. Appl. Environ. Microbial. 61, 1910±1916.
18.Bond PL, Keller J, Blackall LL. 1999. Bio-P and non-bio-P bacteria identification by a novel microbial approach. Water Sci Technol 39(6):13-20.
19.Bond, P. L., 1997, “Investigations of the microbial ecology of enhanced biological phosphorus removal in the activated sludge process,” Ph.D. thesis, The University of Queensland, Australia.
20.Bond, P. L., 1997, ”Investigations of the microbial ecology of enhanced biological phosphorus removal in the activated sludge process,” Ph.D. thesis, The University of Queensland, Australia.
21.Bordacs K. and Chiesa S. C., 1989, “Carbon flow patterns in enhanced biological phosphorus accumulating activated sludge culture,” Water Sci. Tech. Brighton 21, 387-396.
22.Bortone G, Libelli SM, Tilche A, Wanner J. 1999. Anoxic phosphate uptake in the DEPHANOX process. Water Sci Technol 40:177-185.
23.Brdjanovic D., Hooijmans C. M., van Loosdrecht M. C. M., Alaerts G. J. and Heijnen J. J., 1996, “The dynamic effects of potassium limitation on biological phosphorus removal,” Water Res. 30(10), 2323-2328.
24.Brdjanovic D., Logemann S., van Loosdrecht M. C. M., Hooijmans C. M., Alaerts G. J. and Jeijnen J. J., 1998a, “Influence of temperature on biological phosphorus removal: process and molecular ecological studie,s” Wat. Res. 32(4), 1035–1048.
25.Brdjanovic D., Slamet A., van Loosdrecht M. C. M., Hooijmans C. M., Alaerts G. J. and Heijnen J. J., 1998b, “Impact of excessive aeration on biological phosphorus removal from wastewater,” Water Res. 32(1), 200- 208.
26.Brdjanovic D., van Loosdrecht M. C. M., Hooijmans C. M., Alaerts G. J. and Heijnen J. J., 1997b, “Temperature effects on physiology of biological phosphorus removal,” J. Environ. Eng. 123(2), 144-154.
27.Brdjanovic D., van Loosdrecht M. C. M., Hooijmans C. M., Mino T., Alaerts G. J. and Heijnen J. J., 1997a, “Bioassay for glycogen determination in biological phosphorus removal systems,” Proc. 2nd Int. Conf. on Microorganisms in Activated sludge and Biofilm Processes, Berkeley, U.S.A.
28.Brdjanovic D., van Loosdrecht M. C. M., Hooijmans C. M., Mion T., Alaerts G. J. and Jeijnen J. J., 1998c, “Bioassay for glycogen determination in biological phosphorus removal systems,” Wat. Sci. Tech. 37(4-5), 541-547.
29.Brdjanovic, D., Slamet, A., van Loodsdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J. and Heijnen, J.J. (1998) Impact of excessive aeration on biological phosphorus removal from wastewater. Wat. Res. 32(10) 200-208.
30.Brdjanovic, D., Slamet, A., van Loodsdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J. and Heijnen, J.J. (1998) Influence of Temperature on BPR: Process and Molecular Ecological Studies. Wat. Res. 32(4) 1035-1048.
31.Brdjanovic, D., van Loodsdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J. and Heijnen,
32.Buchan, L. (1983) Possible biological mechanism of phosphorus removal . Wat. Sci. Technol., 15 87-103.
33.Carlos D. M. Filipe, Glen T. Daigger, C. P. Leslie Grady Jr., 2001, “A Metabolic Model for Acetate Uptake under Anaerobic Conditions by Glycogen Accumulating Organisms Stoichiometry, Kinetics, and the Effect of pH”, Biotechnol Bioeng.,76(1), 17-31.
34.Carucci A, Lindrea K, Majone M, Ramadori R. 1995. Dynamics of the anaerobic utilization of organic substrates in an anaerobic/aerobic sequencing batch reactor. Water Sci Technol 31:35-43.
35.Carucci A, Lindrea K, Majone M, Ramadori R. 1999. Different mechanisms for the anaerobic storage of organic substrates and their effect on EBPR. Water Sci Technol 39:21-28. CEC, Council Directive concerning urban waste water treatment. (91/271/EC) Official Journal L135/40 (1991) CEC, Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27
36.Cech J S, Hartman P. 1993. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27:1219-1225.
37.Cech J. S. and Hartman P., 1990, “Glucose induced break-down of enhanced biological phosphate removal,” Environ. Tech.11, 651-656.
38.Cech J. S. and Hartman P., 1993, “Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system,” Wat. Res. 27, 1219-1225.
39.Cech, J. S. and Hartman, P. (1990) Glucose induced break down of enhanced biological phosphate removal. Environ. Tech. 11 651-656
40.Chundakkadu, K. and van Loosdrecht, M.C.M. (1999). Effct of temperature on storage polymers and settleability of activated sludge. Water Res., 33 (10) 2374-2382.
41.Comeau Y, Oldham WK, Hall KJ. 1987. Dynamics of carbon reserves in biological dephosphation of wastewater. Proc. IAWPRC Int. Conf. on Biological Phosphate Removal from Wastewaters, Rome, Italy Adv. Water Pollut. Cont. (ed. Ramadori), 39-55.
42.Comeau Y., Hall K. J., Hancock R. E. W. and Oldham W. K. , 1986, “Biochemical model enhanced biological phosphorus removal,” Wat. Res. 20(12), 1511-1521.
43.Comeau, Y., Hall, K.J., Hancock, R.E.W. and Oldham, W.K. (1986) Biochemical Model for enhanced biological phosphorus removal. Wat. Res. 20 (12) 1511-1521.
44.Comeau, Y., Oldham, W.K. and Hall, K.J. (1987) Dynamics of carbon reserves in biological dephosphatation of wastewater. Proc. of IAWPRC Specialized Conference, 28-30 Sept. 1987. Rome. Italy. 39-55.
45.ComeauY, Hall KJ, Hancock REW, OldhamWK. 1986. Biochemical model for enhanced biological phosphorus removal. Water Res 20:1511-1521.
46.Copp, J.B. and Dold, P.L. (2001) Influence of influent phosphorus concentration on an excess biological phosphorus removal sequencing batch reactor-experimental behaviour Submitted to Water Res.,.
47.Crocetti G. R., Banfield J. F., Keller J, Bond P. L., and Blackall L. L, 2002, “Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes,” Microbiology, 148 (Pt 11), 3353-64.
48.Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D. and Blackall L. L., 2000, “Identification of polyphosphate-accumulating organisms and design of 16S rDNA-directed probes for their detection and quantitation,” Appl. Environ. Microbiol. 66, 1175-1182.
49.Filipe CDM, Daigger GT, Grady CPL., 2001a, “A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH,” Biotechnol Bioeng, 76:17–31.
50.Filipe CDM, Daigger GT, Grady CPL., 2001b, “Stoichiometry and kinetics of acetate uptake under anaerobic conditions by an enriched culture of phosphorus-accumulating organisms at different pHs,” Biotechnol Bioeng., 76:32–43.
51.Filipe CDM, Daigger GT, Grady CPL., 2001c, “An integrated metabolic model for the anaerobic and aerobic metabolism of glycogen accumulating organisms,” The 3rd IWA specialised conference on microorganisms in activated sludge and biofilm processes, Rome, Italy.
52.Filipe, C.D.M. and Daigger, G.T., 1998, “Development of a revised metabolic model for the growth of phosphorus-accumulating organisms,” Water Env. Res. 70, 67-79.
53.Filipe, C.D.M., Daigger, G.T., and Grady, C. P. L. Jr (2001 b). pH as a key factor in the competition between glycogen-accumulating organisms and phosphate-accumulating organisms. Water Environment Research. 73 (2), 223-232.
54.Filipe, C.D.M., Daigger, G.T., and Grady, C. P. L. Jr (2001). Effects of pH on the rates of aerobic metabolism of phosphate-accumulating and glycogen-accumulating organisms.Water Environment Research. 73 (2), 213-221.
55.Fukase T., Shibata M. and Miyaji Y., 1985, “The role of an anaerobic stage on biological phosphorus removal,” Wat. Sci. Tech. 17, 68-80.
56.Hood, C.R. and Randall, A.A. (2001) A biochemical hypothesis explaining the response of enhenced biological phosphorus removal biomass to organic substrates. Wat. Res. 35(11) 2758-2766.
57.J.J. (1997) Temperature effects on physiology of biological phosphorus removal. Journal of Environmental Engineering 123 (2) 144-153
58.Jones, M. and Stephenson, T. (1996). The effect of temperature on enhanced biological phosphorus removal. Env. Techn., 17, 965-976.
59.Kuba T., Wachtmeister A., van Loosdrecht M. C. M. and Heijnen J. J., 1994, “Effect of nitrate on phosphorus release in biological phosphorus removal system,” Wat. Sci. Tech. 30(6), 263-269.
60.Lemos, P.C., Viana, C., Salgueiro, E.N., Ramos, A.M., Crespo, J.P.S.G., and Reis, M.A.M. (1998) Effect of carbon source addition on the formation of polyhydroxyalkanoates (PHAs) by a phosphate-accumulating mixed culture. Enz. Micro.Tech. 22, 662-671.
61.Liu W. T., Mino T. and Nakamura K. 1996b, “Biological phosphorus removal processes - effect of pH on anaerobic substrate metabolism,” Wat. Res. 34(1-2), 25-32.
62.Liu W. T., Mino T. Nakamura K. and Matsuo T., 1996a, “Glycogen accumulating population and its anaerobic substrate uptake in anaerobic- aerobic activated sludge without biological phosphorus removal,” Wat. Res. 30(1), 75-82.
63.Liu W. T., Mino T., Nakamura K. and Matsuo T., 1994, “Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content,” J. Ferment. Biotechnol. 77, 535-540.
64.Liu W. T., Nakamura K., Matsuo T. and Mino T., 1997a, “Internal energy- based competition between polyphosphate- and glycogen- accumulating bacteria in biological phosphorus removal reactors - effect of P/C feeding ratio,” Wat. Res. 31(6), 1430-1438.
65.Liu W. T., Nielsen A. T., Wu J. H., Tsai C. S., Matsuo Y. and Molin S., 2001, “In situ identification of polyphosphate- and polyhydroxyalkanoate- accumulating traits for microbial populations in biological phosphorus removal process,” Environ. Microbiol. 3, 110-122.
66.Liu, W., Mino, T., Nakamura, K. and Matsuo, T. (1996) Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Wat. Res. 30 (1) 75-82.
67.Liu, W., Nakamura, K., Matsuo, T. and Mino, T. (1997) Internal energy-based competition between polyphosphate-and glycogen-accumulating bacteria in biological phosphorus removal reactors-effect of P/C feeding rato. Wat. Res. 31 (6) 1430-1438.
68.Lotter, L.H. (1985) The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process. Water Sci. Technol., 17 127-138.
69.Louie, T.M., Mah, T.J., Oldham, W. and Ramey, W.D., 2000, “Use of metabolic inhibitors and gas chromatography / mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems,” Wat. Res. 34(5), 1507- 1514.
70.Majone M, Dircks K, Beun JJ. 1999 Aerobic storage under dynamic conditions in activated sludge processes. The state of the art. Water Sci Technol 39 (1):61-73
71.Mamais D. and Jenkins D., 1992, “The effect of mean cell residence time and temperature on enhanced biological phosphorus removal,” Wat. Sci. Tech. 26(5–6), 955–965.
72.Matsuo Y, 1994, “Effect of the anaerobic solid retention time on enhanced biological phosphorus removal,” Wat. Sci. Tech. 30(6), 193-202.
73.Matsuo Y., Kitagawa M., Tanaka T. and Miya A., 1982, “Sewage and nightsoil treatments by anaerobic-aerobic activated sludge process for biological phosphate removal,” Proc. Environ. Sani. Eng. Res. 19, 82-87 (in Japanese).
74.Maurer, M., Gujer, W., Hany, R. and Bachman, S. (1997) Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems. Wat. Res. 31(4) 907-917.
75.Mino T., Tsuzuki Y. and Matsuo T., 1987, “Effect of phosphours accumulation on acetate metabolism in the biological phosphorus removal process,” Proc. IAWPRC Int Conf. on Biological Phosphate Removal from Wastewaters, Rome, Adv. Water Pollut. Cont, ed., R. Ramadori, pp.27-38 Pergamon Press.
76.Mino T., van Loosdrecht M. C. M. and Hejjnen J. J., 1998, “Microbiology and biochemistry of the enhanced biological phosphate removal process,” Wat. Res. 32(11), 3193-3207.
77.Mino, T., Arun, V., Tsuzuki, Y. and Matsuo, T. (1987) Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Proc. of IAWPRC Specialized Conference, 28-30 Sept. 1987. Rome. Italy. 27-38. 39
78.Mino, T., van Loodsdrecht, M.C.M. and Heijnen, J.J. (1998) Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 32 (11) 3193-3207.
79.Nevin Yagci, Nazik Artan , Emine Ubay Çokgör, Clifford W. Randall, Derin Orhon, 2003, “Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic con- ditions.“ Biotechnology and Bioengineering, Volume 84, Issue 3, Pages 359 – 373.
80.Niandong Wang, Jian Peng, Gordon Hi, 2001, “Biochemical model of glucose induced enhanced biological phosphorus removal under anaerobic condition,” Water Research, 36, 49–58
81.Pereira, H., Lemos, P.C., Reis, M.A.M., Crespo, J.P.S.G., Carrondo, M.J.T. and Santos, H. (1996) Model for carbon metabolism in biological phophorus removal processes based on in vivo 13C-NMR labeling experiments. Wat. Res. 30(9) 2128-2138.
82.Pereira, H.; Lemos, P.C.; Reis, M.A.M.; Crespo, J.P.S.G.; Carrondo, M.J.T. and Santos, H., 1996, “Model for carbon metabolism in biological phophorus removal processes based on in vivo 13C-NMR labeling experiments,” Wat. Res. 30 (9) 2128-2138.
83.Raymond J. Zeng, Mark C. M. van Loosdrecht, Zhiguo Yuan, Jürg Keller, 2002, “Metabolic Model for Glycogen-Accumulating Organisms in Anaerobic/Aerobic Activated Sludge Systems,” Biotechnology and Bioengineering, Volume 81, Issue 1 , Pages 92 – 105.
84.Satoh, H., Mino, T. and Matsuo, T., 1992, “Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intra- cellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes,” Wat. Sci. Tech. 23 (5-6) 933-942.
85.Satoh, H.; Mino, T. and Matsuo, T., 1992, “Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes,” Wat. Sci. Tech. 23 (5-6) 933-942.
86.Smolders G. J. F., van Loosdrecht M. C. M. and Heijnen J. J.,(1994c, “pH; key factor in the biological phosphorus removal process,” Water Sci. Tech. 29(7), 71-74.
87.Smolders G. L. F., van der Meij J., van Loosdrecht M. C. M. and Heijnen J. J., 1994, “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence,” Biotechnol. Bioeng. 43, 461-470.
88.Smolders, G.J.F., van der Meij, J., van Loosdrecht, M.C.M. and Heijnen, J.J. (1994). Model of the anaerobic metabolism of the biological phosphorus removal process:Stoichiometry and pH influence. Biotechnology and Bioengineering. 43, 461-470.
89.Sudiana, I.M., Mino, T., Satoh, H., Nakamura, K. and Matsuo, T. (1999) Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source. Wat. Sci. Tech. 39 (6) 29-35.
90.Van Loosdrecht M. C. M. and Heijnen J. J., 1997, “Importance of bacterial storage polymers in bioprocesses,” Water Sci. Tech. 35(1), 41-47.
91.Van Loosdrecht M. C. M., Smolders G. J., Kuba T. and Heijnen J. J., 1997, “Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater,” Antonie van Leewenhoek 71, 109- 116.
92.Wentzel M. C., Lotter L. H., Ekama G. A., Loewenthal R. E. and Marais G.v.R., 1991, “Evaluation of biochemical models for biological excess phosphorus removal,” Water Sci. Tech. Kyoto 23, 567-576.
93.Wentzel, M.C., Loewenthal, R.E., Ekama , G.A. and Marais, G.V.R. (1988). Enhanced polyphosphate organism cultures in activated sludge systems-Part 1: Enhanced culture development. Wat.SA 14, 81-92.
94.Wentzel, M.C., Lotter, R.H., Ekama, G.A., Loewenthal, R.E. and Marais, G.V.R. (1991).Evaluation of biochamical models for biological excess phosphorus removal. WaterSci. Technol., 23 567-576.
95.Wentzel, M.C., Lotter, R.H., Loewenthal, R.E. and Marais, G.V.R. (1986). Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal-a biochemical model. Wat.SA 12, 209-224.
96.White, D., 1995, “Physiology and Biochemistry of Prokaryotes,” Oxford University Press. New York, NY.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊