跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁文彬
研究生(外文):Wen-Pin Weng
論文名稱:光電氧化法結合化學洗滌技術處理揮發性有機物之可行性研究
論文名稱(外文):Feasibility Study of Photo-electrochemical oxidation Scrubber for Removing Volatile Organic Compounds
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):Chu-chin Hsieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:151
中文關鍵詞:UV甲苯氫氧自由基芬頓法電解還原
外文關鍵詞:UVtoluenehydroxyl radicalsFenton MethodElectrochemical oxidation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃是利用光電氧化法處理有機廢氣中甲苯等揮發性有機物,並進行結合化學洗滌技術之可行性評估與其操作參數探討。由研究結果可得知以2000 ppm甲苯廢氣溶入4 L反應槽中,致其液相起始濃度約為50 mg/L的操作條件下經50 分鐘後甲苯降解率約可達90 %,明顯高於其他高級氧化程序,而其最佳操作條件為pH 值為2、極距1 cm、電流密度1 mA/cm2、Fe2+ 15 mg/L及配合外加UV 燈管等,另求得其反應速率常數k值為2.9 h-1 乃是UV/H2O2等程序的13倍以上,然整體光電氧化法系統中僅需於起始階段添加Fe2+及調整pH 值之外,不需持續添加化學藥劑及調整pH值,且具有需電流較小及皆無化學污泥產生等優點,得明顯提升其操作之便利性,並降低操作成本。
因此乃將其氧化程序結合化學洗滌塔設計開發出一套嶄新的污染防制設備,稱為光電氧化洗滌塔(Photo-electrochemical oxidation scrubber),其屬改良型之Fenton 法,主要機制是以電化學原理之陰極產生氫氣的反應將水中的溶氧還原生成H2O2及外加之Fe2+,再配合外加紫外光催化H2O2使之加速形成氫氧自由基,其反應過程有別於傳統Fenton 法,並不需持續添加Fe2+及H2O2,且反應過程中Fe2+得以不斷藉由電解還原使用之,因此不會產生化學污泥,同時其洗滌液得以循環再生使用,既不會造成液相之二次污染。本研究主要乃是光電氧化洗滌塔甲苯降解最適操作條件探討驗證及相關因子的影響,進一步以其最適條件評估其實用效能。
首先在光電氧化洗滌塔較佳的控制條件為在pH值為2、電流密度1.25 mA/cm2、在Fe2+ 15 mg/L及外加UV燈管且需適量添加輔電解質等情形下,經180分鐘的氧化反應後得到甲苯平均降解效率為60%。
實用效能評估方面,乃以上述較佳的操作條件於連續八小時之長時間下操作,其甲苯平均降解效率仍可維持於51%,因此得以證明其頗具實廠之應用潛力。另外經自由基捕捉劑法實測得知本法乃確實於反應生成氫氧自由基,且在相近的批次式操作條件下,起始至15秒時所產生的僅少於UV/H2O2程序約25 %,且在反應至600秒時兩者所產生的氫氧自由基則幾乎呈現相同的趨勢,但若就其操作方式而言,UV/H2O2若不再持續加藥,則無法維持其氧化能力,反之本法僅需持續供給電流即可持續其氧化能力。
除降解效率之探討外,本研究亦分析甲苯降解之中間產物,其結果得知發現反應時間至30 分鐘時出現包含丁烷、乙苯、對二甲苯、鄰二甲苯、環戊烷及酚等中間產物,其中以對二甲苯含量明顯較高,然而至60 分鐘時甲苯含量已佔總碳氫化合物之98 %,其他中間產物皆已轉換成CO2及水等無害物質,由此可見光電氧化洗滌塔可確實將污染物無毒化、無害化。同時計算其操作成本後發現由於本法僅需於起始階段調整pH值及添加適量亞鐵離子及輔電解質,反應過程中則不需再添加化學藥劑,因此非但操作便利更可凸顯其經濟性及實用性。最後計算其操作費用得知處理單位質量之甲苯廢氣之成本約為NT$ 8 /kg,與其他空氣污染防制設備相比應極具競爭優勢。
目前已完整開發一具實用性且操作方便之污染控制設備,未來應得以增大層板設備、電化學反應槽氧化能力、UV光強度或增加氣液接觸機會等方式予以增加反應之,使整體處理成效有效提升,最後待完成專利申請及相關事宜後,冀望得以有效推廣至協助產業界處理有機廢氣及臭味等問題。
This study was to investigate the removal efficiency and the feasibility of volatility organic compounds (VOCs) using laboratory-scale photo electrochemical oxidation scrubber (PEOS). The key study of this stage is to conduct the performance of oxidation reactor for removing toluene. The results of study on toluene treatment shows that the initial toluene concentration of 2000 ppm is effectively decomposed to attain 90% conversion after 50 minutes in the following conditions: current density 1 mA/cm2; pH 2; a distance of 1 cm between anode and cathode; a ferrous ion dosage of 15 mg/L, an UV radiation wavelength of 254 nm. The reaction rate constant t is 2.9 hr-1 is more than 13 times of other advanced oxidation process , such as UV/H2O2 etc., the reaction of PEOS is differs from conventional Fenton’s method due to not adding ferrous ion(Fe2+) and H2O2 during the treatment process. Thus, the ferrous ion sludge production of PEOS would be less than Fenton’s process.
Therefore, the study developed a set of new air pollution control equipment for photo-electrochemical oxidation combine chemical scrubber technology removing volatile organic compounds. It is based on the electrochemical principle to generate H2O2 from the cathode reduction of oxygen and to add suitable ferrous ion, followed by the generation of hydroxyl radicals (•OH) from H2O2 by a Fenton-like reaction involving a catalyst of UV radiation. The reaction process is different from traditional Fenton method due to don’t need to add ferrous ion and H2O2 , besides sludge from the Photo-electrochemical oxidation would be less. However, the oxidation agent can be recycled, not only decreasing second pollutants but also removing volatile organic compounds from this equipment.
The results of experiments on toluene treatment efficiency by PEOS showed that the average concentration of toluene was approximately 200 ppm, it was effectively decomposed to attain 60% conversion after 180 minutes in the following conditions: current density 1.25 mA/cm2;pH 2; a ferrous ion dosage of 15 mg/L; add inorganic anions, and a UV radiation wavelength of 254 nm.
The results of the practical effect estimation, by using an above-mentioned operation condition to remove toluene for eight hours, it can still maintain average effectively is 51%. Therefore, it proves that is an applied potential equipment. Besides, by measuring to obtain PEOS does generates •OH. With the batch operation system, the •OH production in the UV/H2O2 is more than 1.25 times of this method after 15 seconds, and both produce •OH is almost consistent after 600 seconds. But, UV/H2O2 must add Fe2+ and H2O2 contiguously, just maintain the oxidizing ability, however this method only needs to supply electric current contiguously to keep it on.
In addition to removing efficiency, the study also analyzes the intermediate of toluene. The results detection responds 30 minutes appears that it include butane, ethyl benzene, o-xylene, p-xylene, cyclopropane and phenol etc., among p-xylene is the most. However, respond to 60 minutes almost have not other intermediates and already transfer the CO2 or H2O. Therefore, it shows that the PEOS does reduce the toxicity of the pollutants. This method didn''t add Fe2+ and H2O2 contiguously, so that mainly operation cost are electricity charges, the operation cost were NT$ 8/(Kg waste gas). It has competitive advantages and operates convenient than other air pollution control equipments.
The study developed a set of practical and operated convenient of pollution control equipment. After trying to increase oxidizing ability and feasibility. The result of the study will provide design and operational parameters to the industrial for removing VOCs and odors.
中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vii
表目錄 xi
圖目錄 xii
第一章□前言 1-1
1.1□研究緣起 1-1
1.2□研究目的 1-2
第二章□理論背景與相關文獻 2-1
2.1□甲苯的來源、特性、危害性 2-1
2.1.1□甲苯的來源 2-1
2.1.2□甲苯之物化特性 2-1
2.1.3□ VOCs廢氣一般控制技術 2-3
2.2□濕式洗滌原理 2-8
2.2.1□吸收理論 2-9
2.2.2□濕式洗滌設備之應用 2-11
2.2.3□化學氧化洗滌技術 2-14
2.3□高級氧化程序理論 2-15
2.3.1□紫外光之特性與光化學反應的原理 2-17
2.3.1.1□紫外光之特性 2-17
2.3.1.2□光化學反應之原理 2-18
2.3.2□電解氧化程序之反應原理 2-20
2.3.3□Fenton法氧化程序之反應原理 2-22
2.3.4□電解催化Fenton法氧化程序之反應原理與應用 2-23
2.3.5□光催化Fenton法氧化程序之反應原理與應用 2-25
2.3.6□UV/H2O2氧化程序之反應原理與應用 2-26
2.3.7□氧氣於陰極電解還原形成過氧化氫之理論 2-29
2.4□光電氧化法之反應原理 2-30
2.4.1□應用 2-33
2.4.2□光電氧化法之相關影響因素 2-34
2.4.2.1□過氧化氫與亞鐵離子濃度 2-34
2.4.2.2□pH值 2-35
2.4.2.3□電流密度 2-37
2.4.2.4□電極材料 2-37
2.4.2.5□導電度 2-39
第三章□實驗設備及方法 3-1
3.1□批式反應槽實驗設計 3-1
3.1.1□設備組成 3-1
3.1.2□實驗方法 3-2
3.2□光電氧化洗滌塔之設計與可行性評估 3-3
3.3□光電氧化洗滌塔處理甲苯廢氣之實驗設備 3-5
3.3.1□連續式光電氧化實驗設備 3-5
3.3.2□光電氧化洗滌塔實驗方法 3-9
3.4□實驗儀器及分析方法 3-11
3.4.1□實驗藥品名稱 3-11
3.4.2□實驗儀器 3-12
3.4.3□氣相甲苯濃度分析方法 3-14
3.4.4□液相甲苯濃度分析方法 3-16
3.4.5□過氧化氫分析方法 3-17
3.4.6□氫氧自由基分析方法 3-17
3.4.6.1□氫氧自由基測定方式 3-17
3.4.6.2□氫氧自由基生成量之推估 3-18
3.4.6.3□氫氧自由基測定步驟 3-19
3.4.6.4□中間產物測定步驟 3-20
第四章□結果與討論 4-1
4.1□高級氧化程序處理甲苯廢氣之效率評估 4-1
4.2□光電氧化洗滌塔之設計參數驗證 4-4
4.2.1□電流密度 4-4
4.2.2□亞鐵離子濃度 4-6
4.2.3□pH值 4-8
4.2.4□陰、陽極板面積 4-8
4.2.5□其他設計參數的驗證 4-10
4.3□光電氧化洗滌塔甲苯降解最適操作條件實驗 4-11
4.3.1□背景空白實驗 4-11
4.3.2□電流密度之影響 4-14
4.3.3□pH值之影響 4-17
4.3.4□亞鐵離子濃度之影響 4-20
4.3.5□未添加無機陰離子之影響 4-23
4.4□光電氧化化洗滌塔降解效率評估 4-24
4.4.1□長時間反應下降解效率評估 4-24
4.4.2□光電氧化反應下質量平衡與處理效能之探討 4-25
4.4.3□光電氧化反應氫氧自由基之生成量探討 4-29
4.4.4□光電氧化反應下中間產物之探討 4-33
4.4.5□光電氧化反應下餐飲業及製藥業廢氣處理效率之探討 4-35
4.8□控制成本估算 4-37
第五章□結論與建議 5-1
5.1□結論 5-1
5.2□建議 5-3
參考文獻 6-1
附錄A 甲苯之物質安全資料表 附-1
附錄B 「廢氣處理系統及處理方法」發明專利申請書 附-9
1.Balmer, M. E., and B. Sulzberger, “Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate”, Environmental Science and Technology, 33, 2418, 1999.
2.Bandara, J., et al., ”Dynamics of oxidant addition as a parameter in the modeling of dye mineralization (orange II) via advanced oxidation technologies”, Wat. Sci. Tech., Vol.35, No.4, 87-93, 1997.
3.Bauer, R., et al., “The photo-Fenton reaction and the TiO2/UV process for waste water treatment-novel developments”, Catalysis Today, 53, 131, 1999.
4.Beltran, H. J., et al., “Comparison of the degradation of p-hydroxy benzoic acid in aqueous solution by several oxidation Process”, Chemosphere, 42, 351-359, 2001.
5.Benitez, F. J., et al., “Contribution of the free radicals to chlorophenols decomposition by several advanced oxidation process”, Chemosphere, 41, 1271-1277, 2000.
6.Bigda, R. J., “Consider Fenton’s chemistry for wastewater treatment”, Environmental Science and Technology, Vol.29, No.8, 1-17, 1995.
7.Boye, B., E. Brillas and M. M. Dieng, “Electrochemical degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation”, Journal of electroanalytical chemical, 540, 25-34, 2003.
8.Boye, B., M. D. Momar and E. Brillas, “Anodic oxidation, electro-Fenton and photoelectro-Fenton treatments of 2,4,5-trichlorophenoxyacetic acid”, Journal of Electroanalytical Chemistry, Vol. 557, 135-146, 2003.
9.Brillas, E., and C. Juan, “Mineralization of 2,4-D by advanced electrochemical oxidation processes” , Wat. Res., Vol. 8, 2253-2262, 2000.
10.Brillas, E., et al., “Aniline mineralization by AOP’s: anodic Oxidation, photo catalysis, electro-Fenton and photoelectro-Fenton Processes”, Applied Catalysis B: Environmental, Vol.16, 31-42, 1998.
11.Brillas, E., et al., “Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton”, Electrochemical Acta, Vol. 48, 1697-1705, 2003.
12.Chou, S., et al., “Treatment of hHigh strength hexamine-containing wastewater by electro-Fenton method”, Wat. Sci. Tech., Vol. 33, No.3, 751–759, 1999.
13.Chu, W., et al., “A study of kinetic modeling and reaction pathway of 2,4-dichlorophenol transformation by photo-Fenton-like oxidation”, Journal of Hazardous Materials, Vol.121, 119–126,2005.
14.Emilio, C. A., et al., “EDTA destruction using the solar ferrioxalate advanced oxidation technology comparison with solar photo-Fenton treatment”, Journal of photochemistry and photobiology, Chemistry 151, 121-127, 2002.
15.Fujihira, M., Y. Satoh and T. Osa, “Heterogeneous photocatalytic reaction on semiconductor materials. III. effect of pH and Cu2+ ions on the photo-Fenton type reaction ”, Bull. Chem. Soc. Jpn., 55, 666, 1982.
16.Haag, W. R. and J. Hoigne, “Photo-sensitized oxidation in natural water via HO˙ radical”, Chemosphere, 14, 1695, 1985.
17.Ioffe, B. V. and A. G. Vitenberg, “Head-space analysis and related methods in Gas Chromatography”, J. Wiley & Sons. Inc., 1984.
18.Kavitha, V., and K. Palanivelu, “The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”, Chemosphere, 55, 1235, 2004.
19.Kiwi, J., et al., “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone suffocate in wastewater treatment”, Applied Catalysis B :Environmental, Vol.3, 85 –99, 1993.
20.Kuo, W. G., “Decolorizing dye wastewater with Fenton’s reagent”, Wat. Res. , Vol. 26, No.7, pp. 881–886 , 1992.
21.Lin, S. H., et al., “Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation”. Wat. Res., 33(7), 1735-1741, 1999.
22.Lin, S. H., C. T. Shyu, and M. C. Sun, “Saline wastewater treatment by electrochemical method”, Wat. Res., 32(4), 1059-1066, 1998.
23.Lidia, S., et al., “Santosh A comparative study on oxidation of disperse dyes by electrochemical process ozone, Hypochlorite and Fenton reagent”, Wat. Res., 35(9), 2129-2136, 2001.
24.Lindsey, M. E. and M. A. Tarr, “Quantization of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide”, Chemosphere, 41, 409-417, 2000.
25.Marco, P., and C. Giacomo, “Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent”, Wat. Res., Vol. 35, No.16, 3987-3992, 2001.
26.Maletzky, P., “The photo-Fenton reaction and the TiO2/UV process for waste water treatment-novel developments”, Catalysis Today, 53, 131, 1999.
27.Naumczyk, J. L. Szpyrkowicz and F. Z. Grandi, “Electro-chemical treatment of textile wastewater”, Wat. Sci. Tech., 34(11), 17-24, 1996.
28.Ollis, D. F., “Comparative aspects of advanced oxidation processes”, ACS, I & EC Division Special Sym. Atlanta, Georgia, 1991.
29.Pignatello, J. J., “Dark and photoassisted Fe3+-catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide”, Environmental Science and Technology, 26, 944, 1992.
30.Ruppert, G., and R. Bauer, “The photo-Fenton reaction-an effective photochemical wastewater treatment process”, Journal of Photochemistry and Photobiology A: Chemistry, 73, 75, 1993.
31.Santiago E., et al., “Comparison of different advanced oxidation processes for phenol degradation”, Wat. Res., 36, 1034-1042, 2002.
32.Seller, R. M., “Spectrophotometer determination of hydrogen peroxide using potassium titanium(IV) oxalate, analyst, 105(10), 950-954, 1980.
33.Sharifian, H. and D. W. Kirk, “Electrochemical oxidation of phenol”, J. Electrochem. Soc., Vol. 133, 921–924, 1986.
34.Tang, W. Z. and C. P. Huang, “Stochiometry of Fenton’s reagent in the oxidation of chlorinated aliphatic organic pollutants”, Environmental Technology, Vol. 18, No. 1, 13-23, 1997.
35.Tang, W. Z. and S. Tassos, “Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent”, Wat. Res., Vol. 31, No.5, 1117-1125, 1997.
36.Walling, C., and M. Cleary, “Oxygen evolution as a critical test of mechanism in the ferric-ion catalyzed decomposition of hydrogen peroxide”, Accounts of Chemical Research, Vol.8, 125-131, 1975.
37.Tuhkanen, T. A., “Intermediates of the oxidation of naphthalene in the water with the combination of hydrogen peroxide and UV radiation”, Chemosphere, Vol. 30, No. 8, 1463-1475, 1995.
38.Xie, et al., “Synergetic degradation of 2,4-D by integrated photo and electrochemical catalysis on a Pt doped TiO2/Ti electrode”, Separation and Purification Tech., 34, 73-79, 2004.
39.Yeager, E., “Electrocatalysts for O2 reduction”, Electrochemistry Acta, Vol.29, 1527-1531, 1984.
40.Zepp, R. G., “Factor affecting the photochemical treatment of hazardous waste”, Environ. Sci. Technol., 22, 3, 154, 1988.
41.Zuo, Y., and J. Holgne, “Formation of hydrogen peroxide and depletion of oxalic Acid on atmospheric water by photolysis of iron(III)-oxalato complexes”, Environmental Science and Technology, 26, 1014, 1992.

42.申永順,“以紫外線/過氧化氫程序處理含氯酚類有機容易反應行為之研究”,國立台灣工業技術學院工程技術研究所化學工程技術學程碩士論文,1992。
43.行政院環境保護署,“固定污染源揮發性有機空氣污染物管制策略規劃與减量措施推動計畫”,2003。
44.李世經,“氧化洗滌技術處理甲苯廢氣及餐廚臭味之研究”,國立雲林科技大學環境與安全衛生工程系,2005
45.杜景順,“應用電化學方法生成之過氧化氫氧化分解廢水中甲醛的動力現象”,行政院國家科學委員會補助專題研究報告,臺北巿,1995。
46.吳宗南,“以電解Fenton法處理染料染整廢水之可行性研究”,國立中央大學環境工程研究所碩士論文,1996。
47.吳宗益、徐啟銘、林金柱,“輸儲製程VOCs管制與安全”,工業污染防治,第72期,頁34-63,1999。
48.吳信賢,林樹崧,賴慶智,“應用於半導體業有機廢氣處理的氧化洗滌技術”,產業環保工程技術研討會,2001。
49.張家欽,“白金族修飾電極於氧氣還原之動力研究”,國立成功大學化學工程學系博士論文,1996。
50.張博荀,“H2O2/Fe2+化學氧化法處理反應性染料-Black B 之研究”,國立成功大學化學工程學系碩士論文,2004。
51.張博銘,“以光電氧化法處理水中高濃度醋酸之研究”,台灣大學環工所碩士論文,2002。
52.蔣立中,“污染物電解氧化破壞去除行為之研究”,國立成功大學環境工程研究所博士論文,1996。
53.傅啟峰,“電催化芬頓法處理皮革廢水”,台灣大學環工研究所碩士論文, 2001。
54.經濟部工業局,“高級氧化程序在廢水處理上的應用,工業污染防治手冊,1993。
55.經濟部工業局,“廢氣濕式處理”,工業污染防治技術手冊,1993。
56.劉明哲,“比較不同高級氧化程序分解高爆藥-海掃更之研究”,第二十七屆廢水處理技術研討會論文,台灣大學,2002。
57.鄭鎮杰,“氧化洗滌技術處理半導體廢氣中甲苯與單甲基醚丙二醇之研究”, 雲林科技大學環境與安全衛生研究所碩士論文, 2004。
58.賴來彬,“Fenton程序氫氧自由基生成之研究”,淡江大學水資源及環境工程系,碩士論文,2001。
59.謝祝欽,“半導體業產生有害空氣污染物處理技術”,國科會科技合作研究計畫,1999。
60.謝長原,“電解催化氧化氯酚之研究”,國立成功大學環境工程學系碩士論文,1991。
61.環保署網站—環境毒性物質安全手冊,http://www.epa.gov.tw/J/toxic/handbook/jenv-tox/tolen.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top