跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳真
研究生(外文):Chia-Chen Wu
論文名稱:相思樹胰蛋白酶抑制劑誘導大腸直腸癌細胞凋亡及抑制細胞的侵入轉移能力之研究
論文名稱(外文):Studies on the mechanisms of Acacia confusa trypsin inhibitor induce apoptosis and anti-invasive in human colon adenocarcinoma cells.
指導教授:洪志宏洪志宏引用關係
指導教授(外文):Chih-Hung Hung
學位類別:碩士
校院名稱:元培科學技術學院
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:62
中文關鍵詞:相思樹侵入性凋亡
外文關鍵詞:MMP-2、MMP-9invasionapoptosis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
癌症在目前的死亡因素中位居第一位,其中大腸直腸癌發生的機率以及死亡率逐年上升,在歐美國家當中更是比台灣高出3-4倍。在近年的研究中,蛋白酶抑制劑應用於抑制發炎反應、凝血功能以及誘導癌細胞凋亡中皆扮演著重要的角色。本研究中,探討相思樹(Acacia confusa)種子所分離的胰蛋白酶抑制劑(Acacia confusa trypsin inhibitor);簡稱ACTI),由A鏈及B鏈以兩對雙硫鍵連結所組成的蛋白,A鏈含136個胺基酸,B鏈含39個胺基酸,分子量19.4 kDa,屬於Kunitz-type的抑制劑。
首先將ACTI從相思樹種子中純化出來,以不同濃度的ACTI處理HT-29大腸直腸癌細胞,利用MTT試驗觀察細胞的存活率,在細胞處理48小時後,可發現ACTI 濃度在3μM時細胞的存活率下降至53%,在72小時後更可以下降至40.6%。利用Invasion test,ACTI在濃度2.5 μM處理細胞48小時後,就會抑制HT-29 cells侵入性的能力達到50%,利用Gelatin zymography 的方式可以明顯觀察到ACTI濃度在5 μM處理細胞48小時後,可以抑制MMP-2及MMP-9的表現量。接著在利用RT-PCR觀察mRNA的表現,發現MMP-2及MMP-9的mRNA層次也同樣的被抑制,因此發現ACTI對HT-29 cells生長以及抑制此細胞侵入性能力,可能經由抑制MMP-2、MMP-9的表現量而抑制HT-29 cells侵入的能力。
接著我們探討ACTI對MMP-2及MMP-9的抑制作用是否藉由抑制MAPK pathway所造成,因此利用western blotting的方式看ERK的表現量,結果顯示濃度在5 μM處理細胞48小時,磷酸化ERK的表現量明顯被抑制至25%,因此推論抑制MMP的表現量以及抑制細胞的侵入能力是抑制此pathway所造成。在誘導細胞凋亡方面,利用PI染色的方式,在ACTI濃度2.5 μM處理細胞72小時,可見約50%的細胞,進一步我們再利用western blotting的方法,可以發現ACTI會導致caspase-3活化及cytochrome c由粒腺體釋出至cytosol的量增加,因此導致細胞進行apoptosis。綜合以上結果,ACTI可以抑制大腸直腸癌細胞的侵入性,可能藉由抑制ERK的磷酸化而抑制MMP-2和MMP-9的表現量,使得細胞的侵入能力降低,ACTI誘導HT-29 cells 的凋亡路徑是藉由粒腺體釋放出cytochrome c,cytochrome c至細胞液會與Apaf-1結合,形成多聚體,並促使caspase-9與其結合形成凋亡小體,被活化的caspase-9能夠再去活化caspase-3,而導致細胞凋亡。
A trypsin inhibitor (ACTI) was isolated from Acacia confusa seeds by gel filtration, DEAE-cellulose 52 and trypsin-Sepharose 4B affinity chromatography. ACTI could inhibit invasion of the HT-29 human colon cancer cells by decreasing expression of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in culture medium. The phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) that are the members of the mitogen-activated protein kinase (MAPK family) involved in the up-regulation of MMPs in cells. First, using gelatin zymography observed MMP-2 and MMP-9 in culture medium expression. Second, using invasion test analyze effect of ACTI in HT-29 cells. Finally, we used Western blotting to investigate the phosphorylation of ERK1/2 expression pattern by ACTI in HT-29 cells. These results showed that an ACTI treatment may decrease the expression of MMP-2 and MMP-9 through suppression on ERK1/2 phosphorylation, which in turn led to the reduction of invasive activity in the HT-29 cells. We proposed that ACTI could decrease HT-29 cell’s invasion ability via suppressing expression of MMP-2 and MMP-9, and phosphorylation of ERK1/2.

Another in this study, The ACTI could reduce the cell viability of HT-29 cells in a time- and concentration-dependent manner by using MTT test. The morphological evidence of cells was demonstrated that processed apoptosis by using PI staining after treatment ACTI 0.5μM for 72 h. We also found that amount of cytosolic cytochrome c and active caspase-3 increased at 72 hr after ACTI treatment by Western blot analysis. Thus, the results indicated that ACTI could induce apoptosis of HT-29 cells through inhibiting phosphorylation of ERK, releasing cytochrome c from mitochondria to cytosol and activated of caspase-3.
第一章 緒 論
1.1 植物蛋白酶抑制劑(protease inhibitor)
1.2 相思樹種子胰蛋白酶抑制劑 (Acacia confusa trypsin inhibitor)
1.3 大腸直腸癌之致病因
1.4 大腸直腸癌之治療
1.5 癌細胞的侵入性與轉移
1.6 論文研究方向
第二章 研究材料與方法
2.1 ACTI之萃取[35]
2.2 蛋白質濃度測定
2.3 胰蛋白酶抑制劑活性測定法
2.4 SDS-聚丙烯醯胺板膠電泳法 (SDS-polyacrylamide slab gel
electrophoresis)
2.5 細胞培養
2.6 MTT assay (偵測細胞存活率)
2.7 西方轉漬法(Western blot analysis)
2.8 細胞液中Cytochrome c之分離
2.9 Invasion test (細胞侵入能力之試驗)
2.10 Soft agar growth assay (軟性瓊膠群落生長試驗)
2.11 Gelatin zymography (活性染試驗)
2.12 Reverse transcription-PCR (RT-PCR)
2.13 Apoptosis cells的觀察
第三章 研究結果
3.1 相思樹胰蛋白脢抑制劑(Acacia confusa trypsin inhibitor;ACTI)之純化
3.2 ACTI對HT-29 cells生長之影響---細胞毒性試驗
3.3 ACTI對HT-29 cells生長之影響---軟性瓊膠群落生長試驗 (Soft agar growth
assay)
3.4 ACTI對於HT-29 cells侵入能力之影響
3.5 探討ACTI抑制HT-29 cells之MMP-2和MMP-9的蛋白質表現量
3.6 探討ACTI抑制HT-29 cells之MMP-2和MMP-9的mRNA表現量
3.7 觀察ACTI處理HT-29 cells之磷酸化ERK1/2的影響
3.8 ACTI誘導HT-29 cells細胞進行apoptosis
3.9 Cytochrome c由粒腺體釋出至cytosol的量
3.10 ACTI對HT-29 cells Casepase-3的表現量之影響
第四章 討論與結論
圖表與圖表說明
參考文獻
[1] Delgado-Vargas,F. (2004) Isolation and properties of a Kunitz-type protein inhibitor obtained from Pithecellobium dulce seeds. J. Agric. Food Chem., 52, 6115-6121.

[2] Batista,I.F., Oliva,M.L., Araujo,M.S., Sampaio,M.U., Richardson,M., Fritz,H., Sampaio,C.A. (1996) Primary structure of a Kunitz-type trypsin inhibitor from Enterolobium contortisiliquum seeds. Phytochemistry, 41, 4, 1017-1022.

[3] Garcia,V.A., Freire,M.G., Novello,J.C., Marangoni,S., Macedo,M.L. (2004) Trypsin inhibitor from Poecilanthe parviflora seeds: purification, characterization, and activity against pest proteases. Protein J., 23, 5, 343-350.

[4] Haq,S.K., Khan,R.H.(2003) Characterization of a proteinase inhibitor from Cajanus cajan (L.). J. Protein Chem., 22, 6, 543-554.

[5] Wang,H.X., Ng,T.B. (2006) Concurrent isolation of a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Biochem. Biophys. Res. Commun., 342, 1, 349-353.

[6] Oliva,M.L., Souza-Pinto,J.C., Batista,I.F., Araujo,M.S., Silveira,V.F., Auerswald,E.A., Mentele,R., Eckerskorn,C., Sampaio,M.U., Sampaio,C.A. (2000) Leucaena leucocephala serine proteinase inhibitor: primary structure and action on blood coagulation, kinin release and rat paw edema. Biochim. Biophys. Acta, 1477, 1-2, 64-74.

[7] Cruz-Silva,I., Gozzo,A.J., Nunes,V.A., Carmona,A.K., Faljoni-Alario,A., Oliva,M.L., Sampaio,M.U., Sampaio,C.A., Araujo,M.S. (2004) A proteinase inhibitor from Caesalpinia echinata (pau-brasil) seeds for plasma kallikrein, plasmin and factor XIIa. Biol. Chem., 385, 11, 1083-1086.

[8] Mello,G.C., Oliva,M.L., Sumikawa,J.T., Machado,O.L., Marangoni,S., Novello,J.C., Macedo,M.L. (2001) Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds. J. Protein Chem., 20, 8, 625-632.

[9] Fernanda Troncoso,M., Cerda Zolezzi,P., Hellman,U., Wolfenstein-Todel,C. (2003) A novel trypsin inhibitor from Peltophorum dubium seeds, with lectin-like properties, triggers rat lymphoma cell apoptosis. Arch. Biochem. Biophys., 411, 1, 93-104.

[10] Lin,J.Y., Chu,S.C., Wu,H.C., Hsieh,Y.S. (1991) Trypsin inhibitor from the seeds of Acacia confusa. J. Biochem., 110, 6, 879-883.

[11] Hung,C.H., Lee,M.C., Lin,M.T., Lin,J.Y. (1993) Cloning and expression of the gene encoding Acacia confusa trypsin inhibitor that is active without post-translational proteolysis. Gene, 127, 2, 215-219.

[12] Kyoichi Ozawa and Michael Laskowski, JR. (1996) The reactive site of trypsin inhibitors. J. Biol. Chem., 241, 17, 3955-3961.

[13] Hung,C.H., Lee,M.C., Lin,J.Y. (1994) Inactivation of Acacia confusa trypsin inhibitor by site-specific mutagenesis. FEBS Lett., 353, 3, 312-314.

[14] Ahmedin Jemal, DVM, PhD, Taylor Murray, Elizabeth Ward, PhD, Alicia Samuels, MPH, Ram C. Tiwari, PhD, Asma Ghafoor, MPH, Eric J. Feuer, PhD, Michael J. Thun, MD, MS. Cancer Statistics, 2005

[15] Waterston,A.M., Cassidy,J. (2005) Adjuvant treatment strategies for early colon cancer. Drugs, 65, 14, 1935-1947.

[16] de Gramont,A., Figer,A., Seymour,M., Homerin,M., Hmissi,A., Cassidy,J., Boni,C., Cortes-Funes,H., Cervantes,A., Freyer,G., Papamichael,D., Le Bail,N., Louvet,C., Hendler,D., de Braud,F., Wilson,C., Morvan,F., Bonetti,A. (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol., 18, 16, 2938-2947.

[17] Fuchs,C.S. (2003) Current and ongoing trials with irinotecan in the United States. Semin.Oncol., 30, 4 Suppl 12, 9-17.

[18] Goldberg,R.M., Sargent,D.J., Morton,R.F., Fuchs,C.S., Ramanathan,R.K., Williamson,S.K., Findlay,B.P., Pitot,H.C., Alberts,S.R. (2004) A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol., 22, 1, 23-30.

[19] Westermarck,J., Kahari,V.M. (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J., 13, 8, 781-792.

[20] Nagase H, Woessner JF Jr. (1999) Matrix metalloproteinases. J Biol Chem. 30, 274, 21491-4

[21] Shapiro,S.D. (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol., 10, 5, 602-608.

[22] Stamenkovic,I. (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol., 200, 4, 448-464.

[23] Schwartz,J.D., Shamamian,P., Monea,S., Whiting,D., Marcus,S.G., Galloway,A.C., Mignatti,P. (1998) Activation of tumor cell matrix metalloproteinase-2 by neutrophil proteinases requires expression of membrane-type 1 matrix metalloproteinase. Surgery, 124, 2, 232-238.

[24] Mendes,O., Kim,H.T., Stoica,G. (2005) Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin. Exp. Metastasis, 22, 3, 237-246.

[25] Schmalfeldt,B., Prechtel,D., Harting,K., Spathe,K., Rutke,S., Konik,E., Fridman,R., Berger,U., Schmitt,M., Kuhn,W., Lengyel,E. (2001) Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res., 7, 8, 2396-2404.

[26] Yang,S.F., Hsieh,Y.S., Lin,C.L., Hsu,N.Y., Chiou,H.L., Chou,F.P., Chu,S.C. (2005) Increased plasma levels of urokinase plasminogen activator and matrix metalloproteinase-9 in nonsmall cell lung cancer patients. Clin. Chim. Acta, 354, 1-2, 91-99.

[27] Desrosiers,R.R., Cusson,M.H., Turcotte,S., Beliveau,R. (2005) Farnesyltransferase inhibitor SCH-66336 downregulates secretion of matrix proteinases and inhibits carcinoma cell migration. Int. J. Cancer, 114, 5, 702-712.

[28] Rao,J.S., Gondi,C., Chetty,C., Chittivelu,S., Joseph,P.A., Lakka,S.S. (2005) Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol. Cancer Ther., 4, 9, 1399-1408.

[29] Vayalil,P.K., Mittal,A., Katiyar,S.K. (2004) Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 25, 6, 987-995.

[30] Bawadi,H.A., Antunes,T.M., Shih,F., Losso,J.N. (2004) In vitro inhibition of the activation of Pro-matrix Metalloproteinase 1 (Pro-MMP-1) and Pro-matrix metalloproteinase 9 (Pro-MMP-9) by rice and soybean Bowman-Birk inhibitors. J. Agric. Food Chem., 52, 15, 4730-4736.

[31] Chen,P.N., Hsieh,Y.S., Chiou,H.L., Chu,S.C. (2005) Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem. Biol. Interact., 156, 2-3, 141-150.

[32] Yang,S.A., Paek,S.H., Kozukue,N., Lee,K.R., Kim,J.A. (2006) Alpha-chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation. Food Chem. Toxicol., 44, 6, 839-846.

[33] Lin,J.Y., Hsieh,Y.S., Chu,S.C. (1989) Chimeric protein: abrin B chain-trypsin inhibitor conjugate as a new antitumor agent. Biochem. Int., 19, 2, 313-323.

[34] Inagaki,K., Kobayashi,H., Yoshida,R., Kanada,Y., Fukuda,Y., Yagyu,T., Kondo,T., Kurita,N., Kitanaka,T., Yamada,Y., Sakamoto,Y., Suzuki,M., Kanayama,N., Terao,T. (2005) Suppression of urokinase expression and invasion by a soybean Kunitz trypsin inhibitor are mediated through inhibition of Src-dependent signaling pathways. J. Biol. Chem., 280, 36, 31428-31437.

[35] 洪志宏(1993)由相思樹胰蛋白酶抑制劑基因及其突變種之選殖研究其構造與作用機制之關係,台灣大學醫學院生化研究所博士論文。

[36] Denizot,F., Lang,R. (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 89, 2, 271-277.

[37] Wilkinson,M.G., Millar,J.B. (2000) Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J., 14, 14, 2147-2157.

[38] Schaeffer,H.J., Weber,M.J. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol., 19, 4, 2435-2444.

[39] Kim,G.S., Hong,J.S., Kim,S.W., Koh,J.M., An,C.S., Choi,J.Y., Cheng,S.L. (2003) Leptin induces apoptosis via ERK/cPLA2/cytochrome c pathway in human bone marrow stromal cells. J. Biol. Chem., 278, 24, 21920-21929.

[40] Chen,P.N., Hsieh,Y.S., Chiou,H.L., Chu,S.C. (2005) Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem. Biol. Interact., 156, 2-3.

[41] Chu,S.C., Chiou,H.L., Chen,P.N., Yang,S.F., Hsieh,Y.S. (2004)Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol. Carcinog., 40, 3, 143-149.

[42] Ko,C.H., Shen,S.C., Lee,T.J., Chen,Y.C. (2005) Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Mol. Cancer Ther., 4, 2, 281-290.

[43] Mook,O.R., Frederiks,W.M., Van Noorden,C.J. (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta, 1705, 2, 69-89.

[44] Kobayashi,H., Suzuki,M., Kanayama,N., Terao,T. (2004) Genetic down-regulation of phosphoinositide 3-kinase by bikunin correlates with suppression of invasion and metastasis in human ovarian cancer HRA cells. J. Biol. Chem., 279, 8, 6371-6379.

[45] Saleh,A., Srinivasula,S.M., Acharya,S., Fishel,R., Alnemri,E.S. (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem., 274, 25, 17941-17945.
[46] Kluck,R.M., Bossy-Wetzel,E., Green,D.R., Newmeyer,D.D.(1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275, 5303, 1132-1136.

[47] Vander Heiden,M.G., Chandel,N.S., Williamson,E.K., Schumacker,P.T., Thompson,C.B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell, 91, 5, 627-637.

[48] Dano,K., Behrendt,N., Hoyer-Hansen,G., Johnsen,M., Lund,L.R., Ploug,M., Romer,J. (2005) Plasminogen activation and cancer Thromb. Haemost., 93, 4, 676-681.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top