(18.206.187.91) 您好!臺灣時間:2021/05/19 01:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:徐辰德
研究生(外文):Chen-De Hsu
論文名稱:微電化學加工應用於燃料電池流場板製作
論文名稱(外文):Application of μECM produces flow channel plate of fuel cell
指導教授:李碩仁李碩仁引用關係
指導教授(外文):Shuo-Jen Lee
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:95
中文關鍵詞:金屬燃料電池流場板微電化學加工UV-LIGA製程
外文關鍵詞:fuel cellflow channels platesmicro-Eletrochemical machiningUV-LIGA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
燃料電池是一新的能源技術,目前各國正如火如荼展開研究工作。為了發展更經濟的質子交換膜型燃料電池,技術人員都將焦點放於能提供更好的性能表現和更低的價格的新技術。被認為最有可能降低製造成本的即為流場板。目前廣泛使用的材質為石墨,依照不同電池種類,石墨板也有所不同,但是不管何種石墨材料都有相同的問題:製造成本高和加工困難。若利用金屬材料取代石墨,則可大幅度降低材料的成本。但金屬材料與石墨有著相同的問題;加工困難。一般金屬加工方式不外乎傳統加工之方式,以數值控制加工方式製作流場板,但此方式對縮小電池尺寸卻有其極限在。若以非傳統加工方式中的放電加工或是電鑄成型來製作流場板,其加工時間慢與加工成本過高為最大之缺點,不符合量產之效率。由於一直無法降低製作成本與開發出適當的量產製程,導致商業化的燃料電池一直無法正式量產推廣。
本研究旨在以不鏽鋼金屬為加工材料,利用金屬材料的高強度、導電度、氣密性等特性,研究非傳統加工中之微電化學加工製程於金屬薄型流場板之製作。微電化學加工法(micro-Eletrochemical machining,簡稱μECM)為非傳統加工方法中的一種。簡單來說,其原理為利用〝兩電極放在電解液中,通以直流電源,金屬會由陽極電解出來〞。由於其在加工過程中不涉及機械能及熱能的作用,且此加工方法中金屬切除速率相當高、加工速度快、加工過程中陰極刀具不損耗,故適合應用於金屬微細加工量產,達成生產成本下降的目的。
本研究分主要利用MEMS及電鑄製程成型μECM之具微結構陰極電極。建立電化學加工設備,此設備需具進給之能力,以符合製作薄型流場板時,調整加工間隙之需求。最後以電化學加工製程試作不鏽鋼薄型流場板,了解其可行性與未來機台改善目標。
An efficient and cost effective method for producing flow channels of metallic bipolar plates is essential in making metallic fuel cell a potential technology. Research works on CNC machining, MEMS technology, micro-machining and chemical etching has their drawbacks.
In this paper, the micro-electrochemical machining (μECM) technology is proposed for producing metallic flow channels. The μECM process is the reverse of electroplating process. It is applicable to any conducting materials. It is a zero stress process with minimum thermal effect. By connecting the substrate to the anode and the die to the cathode, the substrate will be dissolved until it has the mirror image geometry of the die. Clean and smooth flow channels could be produced efficiently.
The die with the mirror image of flow channels is produced by the MEMS and LIGA technology. The SS316L stainless steel is the substrate material. A prototype of μECM system was design and manufactured for this study. It consists of a high precision feeding mechanism for the die (cathode), corrosion resistant fixture and platform, a subsystem for pumping and filtering of electrolyte, and a power supply. Process parameters such as electrical density, electricity type, gap between electrodes and electrolyte flow rate were also studied in order to evaluate process efficiency and surface quality.
A single cell flow plate was produced which had an effective area of 2.5 cm by 2.5 cm and thickness of 1 mm. The dimensions of the width and depth of the flow channels were 500μm and 200μm, respectively. The geometry and surface quality of the flow channels under various process parameters were measured. The results showed that the μECM technology produces good quality metallic flow channels very efficiently.
書名頁..........................ii
論文口試委員審定書...............iii
授權書..........................iv
中文提要........................vii
英文提要.......................viii
誌謝 ............................ix
目錄..............................x
表目錄..........................xii
圖目錄.........................xiii
第一章 緒論......................1
1.1 研究背景與目的.............1
1.2 研究目標..................4
1.3 文獻回顧..................4
1.4 論文架構..................7
第二章 研究理論介紹..............10
2.1 電化學加工原理介紹...........10
2.1.1 電化學加工之加工參數.........12
2.1.2 電化學加工電解液簡介.........16
2.1.3 電解液的基本要求與特性........17
2.1.4 常見的電解液分類.............20
2.2 LIGA-like技術與電鑄製程的應用...21
2.2.1 LIGA技術....................22
2.2.2 LIGA-like技術...............23
第三章 研究方法與實驗設備..........24
3.1 研究方法及實驗規劃............24
3.2 實驗設備簡介.................26
3.2.1 電化學加工設備...............26
3.2.2 電鑄銅設備...................32
3.2.3 檢測儀器.....................33
第四章 應用UV-LIGA製程之電極製作....36
4.1 電化學加工微結構電極製作........36
4.2 陰極電極模仁成型流程............36
4.3 陰極電極電鑄成形...............47
第五章 微電化學加工機台..............56
5.1 電化學加工機台簡介..............56
5.2 進給裝置程式撰寫................62
第六章 電化學加工參數測試與不鏽鋼流場板加工..70
6.1 簡易封閉夾治具設計...............71
6.2 陽極加工件加工深度量測............74
6.3 陽極加工件側向擴孔程度量測.........78
6.4 陽極加工件表面雜散腐蝕現象觀察......81
6.5 小結-電化學加工參數測試...........82
6.6 機台加工與結果量測.................83
6.7 小結-機台加工與結果...............88
第七章 結論與未來展望..................89
7.1 結論.............................89
7.2 未來展望.........................90
參考文獻................................92
1. M. Datta and D. Landolt, “Fundamental aspects and applications of electrochemical,” Electrochimica Acta, Vol. 45, pp. 2535-2558, (2000).
2. J.A. McGeough, “Principle of electrochemical machining,” London: champman & Hall, (1974).
3. 佐藤敏一著,賴耿陽譯著, “金屬腐蝕加工技術", 復漢出版社 (1986).
4. 朱樹敏,“電化學加工(ECM)及相關特種加工工藝技術” ,電化學加工(ECM)及相關特種加工工藝技術研討會,台大慶齡工業研究中心(1997).
5. Madhav Datta and Derek Harris, “Electrochemical micromachining: An environmentally friendly, high speed processing technology,” Electrochimica Acta, Vol. 42, pp. 3007-3013, (1997).
6. B. Bhattacharyya, B. Doloi and P. S. Sridhar, “Electrochemical micro-machining: new possibilities: for micro-manufacturing,” Journal of Materials Processing Technology, Vol. 113, pp. 301-305 (2001).
7. B. Bhattacharyya, J. Munda and M. Malapati, “Advancement in electrochemical micro-machining,” International Journal of Machine Tools & Manufacture Design, Research and Applicaton, Vol. 44, pp. 1577-1589, (2004).
8. J. Hopenfeld and R. R. Cole, “Electrochemical Machining – Prediction and Correlation of Process Variables,” Journal of Engineering for Industry, pp. 455-461, November (1966).
9. V. Chetty and V. Radhakrishnan, “Electrolyte Velocity Measurement Using LDV in an Experimental Electrochemical Machining Setup,” International Journal Macchine Tool Design Research, Vol. 19, pp. 157-163, (1979).
10. A.K.M. De Silva and J.A. McGeough, “Process monitoring of electrochemical micromachining,” Jounal of Materiasl Processing Tecchnology, Vol. 76, pp. 165~169, (1998).
11. B. Bhattacharyya and J. Munda, “Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain,” International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
12. H. Hocheng, Y.H. Sun, S.C. Lin and P.S. Kao, “A Material Removal Analysis of Electrochemical Machining Using Flat-end cathode,” Journal of Material Processing Technology, Vol. 140, pp. 264-268, (2003).
13. Y. Li, Y. Zheng, G. Yang and L.Q. Peng, “Localized electrochemical micromachining with gap control,” Sensors and Actuators, Vol. 108, pp. 144-148, (2003).
14. 蔡和蒼,"反求法在電化學加工刀具設計上之應用",國立中央大學機械研究所碩士論文(1995).
15. A.H. Meleka and D.A. Glew, “Electrochemical Machining, “International Metals Reviews, pp. 229-252, September (1977).
16. F. Zawistowski, “New System of Electrochemical Form Machining Using Universal Rotation Tools,” International Journal of Machine Tool and Manufacture, Vol. 30, No. 3, pp. 475-483, (1990).
17. D. Zhu and H.Y. Xu, “Improvement of electrochemical machining accuracy by using dual pole tool,” Journal of Materials Processing Technology, Vol. 129, pp. 15~18, (1998).
18. O.V. Krishnaiah Chetty and V. Radhakrishnan, “Surface Studies in ECM Using an Relocation Machining Fixture,” International Journal of Machine Tool Design and Research , Vol. 18, pp. 1-8, (1978).
19. Hiroaki Suzuki, “Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring,” Materials Science and Engineering C, Vol. 12, pp. 55-61, (2000).
20. V.K. Jain, Vinod Kuman Jain and P.C. Pandey, “Corner Reproduction Accuracy in Electro-Chemical Drilling (ECD) of Blind Holes,” Journal of Engineering for Industry, Vol. 106, pp. 55-62, (1984).
21. I.M. Crichton and J.A. Mcgeough, “Studies of the Discharge Mechanicals in Electrochemical Arc Machining,” Journal of Applied Electrochemistry, Vol. 15, pp. 113-119, (1985).
22. Y. Chengye and Z.X. Liu, “Pulse Electrochemical Machining,” Nanjing Aeronautical Institute, pp. 74-99 , May (1988).
23. V. Kirchner, X.H. Xia and R. Schuster, “Electrochemical Nanostructuring with Ultrashort Voltage pulses,” Acc. Chem. Res., Vol. 34, pp. 371-377, (2001).
24. M. Kock, V. Kirchner, R. Schuster, “Electrochemical Micromachining with Ultrashort Voltage Pulses-a Versatile Method with Lithographical Precision,” Electrochimica Acta, Vol. 48, pp. 3213-3219, (2003).
25. 田福助,電化學基本原理與應用,1978年十月,五洲出版社。
26. E.J. Weller著,張瑞慶譯,非傳統加工,1999年一月,高立圖書有限公司。
27. 許坤明,非傳統加工,2005年一月,全華科技圖書股份有限公司。
28. http://www.microchem.com/products/pdf/SU8_2035-2100.pdf, Micro Chem, SU-8 2000 HandBook.
29. M. Despont, H. Lorenz, N. Fahrni, J. Brugger, P. Renaud and P. Vettiger, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist for MEMS applications,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 518-522, ( 1997).
30. H. Lorentz, M. Despont, N. Fahmi, N. LaBianca, P. Renaud and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 121-124, (1997).
31. P. M. Dentinger, W. M. Clift and S. H. Goods, “Removal of SU-8 photoresist for thick film applications,” Microelectronic Engineering, Vol. 61-62, pp. 993-1000, (2002).
32. 楊啟榮,微機電製程之精密電鑄技術--微機電系統技術與應用,2003年,精密儀器發展中心出版。
33. 曾準梁、吳仲達、秦月文,陳鈞武,呂佩仁,電鍍工藝手冊,1989年,機械工業出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top