(3.230.154.160) 您好!臺灣時間:2021/05/07 23:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張益瑋
研究生(外文):Yi-Wei Chang
論文名稱:多壁奈米碳管強化環氧樹脂複合材料的機械性質
論文名稱(外文):Uniaxial Stress-Strain Behavior of MWCNT-Reinforced Epoxy-Matrix Composites
指導教授:余念一
指導教授(外文):N. Yu
學位類別:碩士
校院名稱:元智大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:英文
論文頁數:64
中文關鍵詞:奈米碳管環氧樹脂複合材料機械性質
外文關鍵詞:carbon nanotubeCNTepoxycompositesmechanical properties
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1399
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:137
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管具有高剛度與高強度,它被視為最佳的複合材料的補強材。本研究使用環氧樹脂為基材並且加入不同直徑的多壁奈米碳管作為補強材,並討論複合材料在單軸拉伸下,碳管的重量百分比與直徑對於複合材料機械性質的影響。結果顯示在添加直徑為小於20奈米及介於40到60奈米的5 wt% 奈米碳管/環氧樹脂複合材料,其楊氏模數分別為4.56 GPa及4.36 GPa,抗拉強度分別為52.89 MPa與46.80 MPa,而純環氧樹脂的楊氏模數與抗拉強度分別為2.83 GPa及25.67 MPa。二種微觀力學模型-艾緖比與森田中-被推導用來預估多壁奈米碳管/環氧樹脂複合材料的彈性係數,並且與實驗結果比較。
Due to its excellent stiffness and strength, the carbon nanotube (CNT) is considered as an ideal candidate for reinforcement in composites. In the present work, the epoxy resin is used as the matrix whereas multi-walled carbon nanotubes (MWCNTs) with various diameters are used as the reinforcement. The composite is subjected to uniaxial tension and the effects of CNT weight fraction and CNT diameter on the mechanical properties of the composite are studied. The experiment results show that the Young modulus of 5 wt% CNT/epoxy composites with a CNT diameter D < 20 nm and D = 40 ~ 60 nm is 4.56 GPa and 4.36 GPa, and the tensile strength is 52.89 MPa and 46.80 MPa, respectively, whereas the Young modulus and the tensile strength of the pure epoxy is 2.83 GPa and 25.67 MPa, respectively. Micromechanics models are developed to predict the Young modulus of CNT-reinforced composites. The predicted Young moduli are benchmarked with the experimental data of MWCNT-reinforced epoxy-matrix composites.
TABLE OF CONTENTS

Abstract.............................................................i
Acknowledgments....................................................iii
List of Notations...................................................iv
Table of Contents...................................................vi
List of Tables......................................................ix
List of Figures......................................................x
Chapter 1 Introduction...............................................1
1.1 Background.............................................1
1.1.1 Composite Material...............................1
1.1.2 Categorization of Composite Materials............1
1.1.3 Applications of Composites.......................2
1.1.4 Carbon Nanotubes.................................2
1.1.5 Epoxy............................................3
1.2 Problem Statement......................................4
1.3 Literature Review......................................4
1.4 Objectives.............................................8
Chapter 2 Experiments...............................................13
2.1 Experimental Setup....................................13
2.1.1 Materials.......................................13
2.1.2 Facilities......................................13
2.2 Specimen Preparation..................................14
2.3 Tensile Test..........................................15
2.4 Experiment Result.....................................16
2.5 Microstructure Characterization.......................16
Chapter 3 Modeling..................................................46
3.1 Effective Properties..................................46
3.2 Homogenization........................................46
3.2.1 Eshelby’s Equivalent Inclusion Method..........46
3.2.2 Mori-Tanaka Method..............................47
3.3 Coordinate Transformation.............................48
3.3.1 Eshelby’s Model................................49
3.3.2 Mori-Tanaka’s Model............................50
3.4 Results...............................................50
3.4.1 Young’s modulus of MWCNT.......................50
3.4.2 Young’s modulus of MWCNT/epoxy composite.......51
Chapter 4 Conclusions...............................................57
Appendix A..........................................................58
Appendix B..........................................................59
References..........................................................61
Ajayan, P. M., Schadler, L. S., Giannaris, C., and Rubio, A. (2000), “Single-walled nanotube-polymer composites: strength and weaknesses,” Advanced materials, 12, 10, pp. 750 - 753.

Allaoui, A., Bai, S., Cheng, H. W., and Bai, J. B. (2002), “Mechanical and electrical properties of a MWNT/epoxy composite,” Composite Science and Technology, 62, pp. 1993 – 1998.

Andrews, R., Jacques, D., Rao, A. M., Rantell, T., Derbyshire, F., Chen, Y., Chen, J., and Haddon, R. C. (1999), “Nanotube composite carbon fibers,” Applied Physics Letters, 75, 9, pp. 1329 - 1331.

Chen, X., Xia, J., Peng, J., Li, W., and Xie, S. (2000), “Carbon-nanotube metalmatrix composites prepared by electroless plating,” Composites Science and Technology, 60, 2, pp. 301 - 306.

Cooper, C. A., Young, R. J., and Halsall, M. (2001), “Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy,” Composites Part A, 32, pp. 401 - 411.

Daniel, I. M., and Ishai, O. (1994), Engineering Mechanics of Composite Materials, Oxford University Press.

Ellis, B. (1993), CHEMISTRY and TECHNOLOGY of EPOXY RESINS, Chapman & Hall.

Eshelby, J. D. (1957), “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society of London, A241, pp.376-396.

Flahaut, E., Peigney, A., Laurent, Ch., Marliere, Ch., Chastel, F., and Rousset, A. (2000), “Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties,” Acta Materialia, 48, 14, pp. 3803 - 3812.

Gibson, R. F. (1994), Principles of Composites Material Mechanics, McGraw-Hill, New York.

Gong, X., Liu, J., Baskaran, S., Voise, R. D., and Young, J. S. (2000), “Surfactant assisted processing of carbon nanotube/polymer Composites,” Chemistry of Materials, 12, 4, pp. 1049 - 1052.

Iijima, S. (1991), “Discovery of multi-wall carbon nanotubes,” Nature, 354, pp. 56 – 58.

Iijima, S. (1994), “Carbon nanotubes,” MRS Bulletin, 19, 11, pp. 43 – 51.

Jia, Z., Wang, Z., Xu, C., Liang, J., Wei, B., Wu, D., and Zhu, S. (1999), “Study on poly(methyl methacrylate)/carbon nanotube composites,” Materials Science and Engineering A, 271, pp. 395 - 400.

Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E. (1985) "C60 : Buckminsterfullerene," Nature, 318, pp. 162 – 163.

Lau, K. T., Shi, S. Q., and Cheng, H. M. (2003), “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, 63, pp. 1161 – 1164.

Li, X., Gao, H., Scrivens, W. A., Fei, D., Xu, X., Sutton, M. A., Reynolds, A. P., and Myrick, M. L. (2004), “Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites,” Nanotechnology, 15, pp. 1416 – 1423.

Liu, J. Z., Zheng, Q., and Jiang, Q. (2000), “Effect of a rippling mode on resonances of carbon nanotubes,” Physical Review Letter, 86, 21, pp. 4843 - 4846.

Lordi, V., and Yao, N. (2000), “Molecular mechanics of binding in carbon nanotube polymer composites,” Journal of Materials Research, 15, 12, pp. 2770 - 2779.

Ma, R. Z., Wu, J., Wei, B. Q., Liang, J., and Wu, D. H. (1998), “Processing and properties of carbon nanotubes-nano-SiC ceramic,” Journal of Materials Science, 33, 21, pp. 5243 - 5246.

Mori and Tanaka (1973), “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Met., 21, pp.571-574.

Nemat-Nasser, S., and Hori, M. (1993), Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland.

Odom, T. W., Huang J. L., Kim, P., and Lieber, C. M. (2000), “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. B, 104, pp. 2794 – 2809.

Qian, D., Dickey, E. C., Andrews, R., and Rantell, T. (2000), “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters, 76, 20, pp. 2868 - 2870.

Salvetat, J. P., Briggs, G. A. D., Bonard, J. M., Bacsa, R. R., Kulik, A. J., Stockli, T., Burnham, N. A., and Forro, L. (1999), “Elastic and shear moduli of single-walled carbon nanotube ropes,” Physical Review Letters, 82, 5, pp. 944 - 947.

Schadler, L. S., Giannaris, S. C., and Ajayan, P. M. (1998), “Load transfer in carbon nanotube epoxy composites,” Applied Physics Letters, 73, 26, pp. 3842 - 3844.

Shaffer, M. S. P., and Windle, A. H. (1999), “Fabrication and characterization of carbon nanotube/poly (vinylalcohol) Composites,” Advanced Materials, 11, pp. 937 - 941.

Song, Y. S., and Youn, J. R. (2005), “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, 43, pp. 1378 – 1385.

Thostenson, E. T., and Chou, T. W. (2002), “Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization,” Journal of Physics D: Applied Physics, 35, pp. L77 - L80.

Treacy, M. M. J., Ebbesen, T. W., and Gibson, J. M. (1997), “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature, 381, pp. 678 – 680.

Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997), “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, 277, pp. 1971 – 1975.

Xu, C. L., Wei, B. Q., Ma, R. Z., Liang, J., Ma, X. K., and Wu, D. H. (1999), “Fabrication of aluminum-carbon nanotube composites and their electrical properties,” Carbon, 37, 5, pp. 855 - 858.

Yakabson, B. I., Brabec, C. J., Bernholc, J. (1996), “Nanomechanics of Carbon Nanotubes: Instabilities beyond Linear Response,” Phys Rev Lett, 76, pp. 2511 – 2514.

成會明 (2004), 奈米碳管, 五南出版社

黃至敏 (2004), “纖維強化複合材料的等效彈性性質”, 中華民國力學學會第二十八屆全國力學會議, pp. 1375 - 1382.

章正翰 (2004), “應用雙重內含物模型預估奈米碳管之楊氏係數”, 私立元智大學機械工程研究所

賴耿陽 (1999), 環氧樹脂應用實務, 復漢出版社

http://134.208.23.152/publications/publications3/pub2.htm (2005.10.18)

http://students.chem.tue.nl/ifp03/images/mwnt.gif (2005.10.18)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔