1. Aamodt, A. and E. Plaza, “Case-Based Reasoning: Foundational Issue Methodological Variations and System,” Artificial Intelligence Communications, 7:1, pp.39-59, 1994.
2. Abraham, A., N. Baikunth, and P.K. Mahanti, “Hybrid Intelligent Systems for Stock Market Analysis,” Lecture Notes in Computer Science, 2074, pp.337-345, 2001.
3. Allen, B. P., “Case-based reasoning: business applications,” Communications of the ACM, 37, pp.40–42, 1994.
4. Chang, P. C, and C. Y. Lai, “A hybrid system combining self-organizing maps with case-based reasoning in wholesaler’s new-release book forecasting,” Expert Systems with Application, 29, pp.183-192, 2005.
5. Chaochang C., “A case-based customer classification approach for direct marketing,” Expert Systems with Applications, 122, pp.163-168, 2002.
6. Chen, M. Y., and D. A. Linkens, “Rule-base self-generation and simplification for data-driven fuzzy models,” Fuzzy Sets and Systems, 142, pp.243–265, 2004.
7. Chun, S. H., and Y. J. Park, “A new hybrid data mining technique using a regression case based reasoning: Application to financial forecasting,” Expert Systems with Application, 31, pp.329-336, 2006.
8. Chi, S. C., H. P. Chen, and C. H. Cheng, “A Forecasting Approach for Stock Index Future Using Grey Theory and Neural Networks,” IEEE International Joint Conference on Neural Networks, 6, pp.3850-3855, 1999.
9. Edwards, R. D., and J. Magee, Jr., Technical Analysis of Stock Trends 8th edition, Amacom, 2001.
10. Granville, and E. Joseph, Granville''s New Strategy of Daily Stock Market Timing for Maximum Profit, Englewood Cliffs, NJ: Prentice-Hall, 1976.
11. Haddock, J., and J. Mittenthal, “Simulation Optimization Using Simulated Annealing,” Computers Industrial Engineering, 22, pp.387-395, 1992.
12. Hunt, J. “Case based diagnosis and repair of software faults,” Expert Systems, 14, pp.15-23, 1997.
13. Kim, K. J., and I. Han, “Genetic Algorithms Approach to Feature Discretization in Artificial Neural Networks for The Prediction of Stock Price Index,” Expert Systems with Applications, 19, pp.125-132, 2000.
14. Kimoto, T., and K. Asakawa, “Stock market prediction system with modular neural network,” IEEE International Joint Conference on Neural Network, 1, pp.1-6, 1990.
15. Kuo, R. J., and K. C. Xue, “A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weight,” Decisions Support System, 24, pp.105-126, 1998.
16. Kwon, Y. K., and B. R. Moon, “Daily Stock Prediction Using Neuro-genetic Hybrids,” Lecture Notes in Computer Science, 2274, pp.2203-2214, 2003.
17. Lee, J. W., “Stock Price Prediction Using Reinforcement Learning,” IEEE International Joint Conference on Neural Networks, 1, pp.690-695, 2001.
18. Li, Y., R. Zhao, and Y. Zhang, “A hybrid design method of fuzzy systems,” 7th International Conference of Signal Processing, Beijing, 2, pp.1618-1621, 2004.
19. Liao, T. W., “Classification of Welding Flaw Types with Fuzzy Expert Systems,” Expert Systems with Applications, 25, pp.101-111, 2003.
20. Luxhoj, J. T., J. O. Riis, and B. Stensballe, “A hybrid econometric-neutral network modeling approach for sales forecasting,” International Journal of Production Economics, 43, pp.175-192, 1996.
21. Michael D.G. and S.A. Moore, “Depicting the use and purpose of documents to improve information retrieval,” http://www.umich.edu/~samoore/resear..index,1997.
22. Quah, T. S., and B. Srinivasan, “Improving returns on stock investment through neural network selection,” Expert Systems with Application, 17, pp.295-301, 1999.
23. Ramazan, G., “Non-linear prediction of security returns with moving average rules,” Journal of Forecasting, 15, pp.165-174, 1996.
24. Schank, R.C. “Dynamic Memory: Theory of Reminding and Learning in Computers and People”, Cambridge University Press, 1982.
25. Smyth, B., “Constructing Competent Case Based Reasoners: Theories, Tools and Techniques,” Proceedings of the Workshop on Automating the Construction of Case Based Reasoners, Stockhol, Sweden, 1999.
26. Sun, H. R., H. Pu, and L. H. Zhou, “A New Method to Construct Fuzzy Systems Based On Rule Selecting,” Proceedings of International Conference of Machine Learning and Cybernetics, Shanghai, 3, pp.1855-1858, 2004.
27. Takagi, T. and M. Sugeno, “Fuzzy Identification of Systems and its Application to Modeling and Control,” IEEE Transactions on Systems, Man and Cybernetics, 15, pp.116-132, 1985.
28. Wang, L. X., and J. M. Mendel, “Generating Fuzzy rules by Learning form Examples,” IEEE Transactions on Systems, Man and Cybernetics, 22, pp.1414-1427, 1992.
29. Wang L. M., and J. M. Mendel, “Generating fuzzy rules by learning from examples,” The First IEEE international Conference on Fuzzy Systems, 22, pp.203-210, 1992.
30. Wilhelm, M. R., and T. L. Ward, “Solving Quadratic Assignment Problems by Simulated Annealing,” IIE Transactions, 19, pp.107-119, 1987.
31. Yoon, Y., and J. Swales, “Prediction stock price performance: a neural network approach,” Proceeding of Twenty-Fourth Annual Hawaii International Conference on System Science, 4, pp.156-162, 1991.
32. Zadeh, L. A., “Fuzzy Sets,” Information and Control, 8, pp.338-353, 1965.
33. 于宗先,經濟預測,中央研究院經濟研究所,1972。
34. 王春笙,「以技術指標預測台灣股市股價漲跌之實證研究-以類神經網路與複回歸模式建構」,國立台灣大學資訊管理研究所碩士論文,1996。35. 江珊,「用模糊預測系統預測領先指標綜合指數」,私立淡江大學資訊工程學系碩士論文,2002。36. 李沃牆和林維垣,「基因演化類神經網路模型於台股上現行權證的評價」,東吳經濟學學術研討會論文集,2000。
37. 李惠妍,「類神經網路與迴歸模式在台股指數期貨預測之研究」,國立成功大學企業管理學系碩士論文,2003。38. 杜金龍,基本分析在台灣股市應用的訣竅,財訊,1996。
39. 林建成,「遺傳演化類神經網路於台灣股市預測與交易策略之研究」,私立東吳大學經濟學系碩士論文,2001。40. 周湘蘭,「類神經網路在多重產品需求預測上之應用」,私立元智大學工業工程與管理學系碩士論文,2002。41. 洪國智,「建構加權演化式模糊類神經網路於PCB生產預測之研究」,私立元智大學工業工程與管理研究所碩士論文,2005。42. 徐子峻,「預測台灣電子類股指數報酬率之風險值-比較歷史模擬法、指數平滑法及複迴歸分析法」,私立長庚大學企業管理研究所碩士論文,2002。43. 徐桂祥,「灰色系統在商情預測上之研究」,國立雲林技術學院資訊管理技術研究所碩士論文,1997。44. 許維宸,「應用聚類技術於模糊資料萃取方法之研究」,國立台北科技大學生產系統工程與管理研究所碩士論文,2001。45. 郭秀敏,「模糊倒傳遞網路於印刷電路板生產預測之運用」,私立元智大學工業工程與管理研究所碩士論文,2004。46. 陳光南,「依學生偏好及學習狀態建構學習輔助者與知識協尋系統」,國立中央大學資訊工程研究所碩士論文,2000。
47. 陳家隆,「運用統計方法與人工智慧技術建構整合性投資策略」,國立成功大學統計研究所碩士論文,2002。48. 陳秀榛,「整合分群技術與演化式模糊系統於訂單交期預測之研究」,私立元智大學工業工程與管理研究所碩士論文,2005。49. 曾煥雯,「跨廠訂單分配模式之建構─應用模擬退火演算法」,私立元智大學工業工程與管理研究所碩士論文,2000。50. 湯健文,「類神經網路於因果關係模型與時間數列模型之應用」,私立中華大學土木工程學系碩士論文,2003。51. 葉怡成,「類神經網路模式應用與實作」,儒林圖書,2003。
52. 詹金凌,「整合碼蟻理論與案例式推理於知識管理之應用」,國立台北科技大學生產系統工程與管理研究所碩士論文,2002。
53. 楊基鴻,「(新)股票操作大全」,產京實業,2002。
54. 楊雯寧,「台灣股價指敗預測模型之探討」,私立元智大學工業工程與管理研究所碩士論文,2001。55. 楊東翰,「整合基因演算法及類神經網路於印刷電路板生產預測之研究」,私立元智大學工業工程與管理研究所碩士論文,2004。56. 蔡依玲,「台灣股票市場報酬率之研究」,國立成功大學統計學研究所碩士論文,2000。57. 蔡金豐,「類神經網路於台灣股市預測之應用」,國立高雄第一科技大學電腦與通訊工程研究所碩士論文,2001。
58. 劉克一,「以遺傳演算法演化類神經網路在股價預測上的應用」,私立真理大學管理科學研究所碩士論文,2000。59. 劉瑞鑫,「時間序列與人工智慧方法在台股指數報酬率預測之績效比較」,私立朝陽科技大學財務金融系碩士論文,2003。