1.Al-Assaf Y., “Recognition of control chart patterns using multi-resolution wavelets analysis and neural networks,” Computers & Industrial Engineering, 47, 17-29 (2004).
2.Aradhye, H. B., Bakshi, B. R., Strauss, R. A., and Davis, J. F., “Multisacle SPC using wavelets-theoretical analysis and properties,” AICHE Journal, 49, 939-958 (2003).
3.Assaleh K., and Al-Assaf, Y., ”Features extraction and analysis for classifying causable patterns in control charts,” Computers & Industrial Engineering, 49, 168-181 (2005).
4.Bakshi, B. R., “Multiscale analysis and modeling using wavelets,” Journal of Chemometrics, 13, 415-434 (1999).
5.Cheng, C. S., “A neural network approach for the analysis of control chart patterns,” International Journal of Production Research, 35, 667-697 (1997).
6.Cheng, C. S., and Cheng, H. P., “Control chart pattern recognition using wavelet analysis and neural networks,” in Proceedings The 6th Asia Pacific Industrial Engineering and Management Conference, December 4-7, 2005, Manila, Philippines.
7.Cheng, C. S., and Tzeng, C. A., “A backpropagation neural network for the identification of change structure in statistical process control,” Journal of the Chinese Institute of Industrial Engineers, 12, 215-223 (1995).
8.Cheng, C. S., and Tzeng, C. A., “A neural network approach for detecting shifts in the process mean and variability,” Journal of the Chinese Institute of Industrial Engineers, 11, 67-75 (1994).
9.Crone, S. F., Lessmann, S., and Stahlbock, R. “The impact of preprocessing on data mining: An evaluation of classifer sensitivity in direct marketing,” European Journal of Operational Research, 173, 781-800 (2006).
10.Dedeakayogullari, I., and Burnak, N., “The determination of mean and/or variance shifts with artificial neural networks,” International Journal of Production Research, 37, 2191-2200 (1999).
11.Donoho, D. L., “De-noising by soft-thresholding,” IEEE Transactions, 41, 613-627 (1995).
12.Donoho, D. L., and Johnstone, I. M., “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, 81, 425-455 (1994).
13.Guh, R. S., and Hsieh, Y. C., “A neural network based model for abnormal pattern recognition of control charts,” Computers & Industrial Engineering, 36, 97-108 (1999).
14.Guo, Y., and Dooley, K. J., “Distinguishing between mean, variance and autocorrelation changes in statistical quality control.” International Journal of Production Research, 33, 497-510 (1995).
15.Guo, Y., and Dooley, K. J., “Identification of change structure in statistical process control.” International Journal of Production Research, 30, 1655-1669 (1992).
16.Hassan, A., Baksh, M., Shaharoun, A. M., and Jamaluddin, H., “Improved SPC chart pattern recognition using statistical features,” International Journal of Production Research, 41, 1587-1603 (2003).
17.Hush, D. R., and Horne, B. G., “Progress in supervised neural networks,” IEEE Signal Processing Magazine, January, 8-39 (1993).
18.Hush, D. R., Salas, J. M., and Horne, B. G., “Error surfaces for multi-layer perceptrons,” IEEE Transactions on System, Man and Cybernetics, 22, 2 (1992).
19.Hwarng, H. B., “Proper and effective training of a pattern recognizer for cyclic data,” IIE Transactions, 27, 746-756 (1995).
20.Jang, K. Y., Yang, K., and Kang, C., “Application of artificial neural network to identify non-random variation pattern on the run chart in automotive assembly process,” International Journal of Production Research, 41, 1239-1254 (2003).
21.Mallet, Y., Coomans, D., and de Vel, O., “Recent development in discriminant analysis on high dimensional spectral data,” Chemometrics and Intelligent Laboratory Systems, 35, 157-173 (1996).
22.Nelson. L. S., “The Shewhart control chart-tests for special cause,” Journal of Quality Technology, 16, 237-239 (1984).
23.NeuralWare Professional II/Plus (1995). Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks Explorer. Pittsburgh: NeuralWare, Inc.
24.Pham, D. T., and Oztemel, E., “Control chart pattern recognition using neural networks,” Journal of Systems Engineering, 2, 256-262 (1992).
25.Pham, D. T., and Wani, M. A., “Feature-based control chart pattern recognition,” International Journal of Production Research, 35, 1875-1890 (1997).
26.Rumelhart, D. E., Hinton, G. E., and Williams, R. J., (1986). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing (Edited by D. E. Rumelhart and J. L. McClelland), Vol. 1, 318-362. MIT Press, Cambridge, MA.
27.Smith, A. E., “X-bar and R control interpretation using neural computing,” International Journal of Production Research, 32, 309-320 (1994).
28.Western Electric Company, Statistical Quality Control Handbook, Western Electric Co. Inc., Indianapolis, Indiana (1958).
29.林榮和,「應用類神經網路於管制圖非隨機性樣式之辨識」,元智大學工業工程與管理所碩士論文 (1999)。30.陳信嘉,「管制圖非隨機樣式之辨識及參數之估計」,元智大學工業工程與管理所碩士論文 (1999)。31.蔡政良,「以特徵為基之管制圖非隨機性樣式的辨識-使用類神經網路」,元智大學工業工程與管理所碩士論文 (1996)。32.羅宗元,「應用小波分析與類神經網路於管制圖非隨機樣式之偵測」,元智大學工業工程與管理所碩士論文 (2005)。