白清錫,1986年,「品質管制之統計方法」,第四版,中華民國品質管制學會發行,pp.18~20、pp.29~27。
錢志豪,2002年,「建構液晶顯示器(LCD)色彩偏差瑕疵之自動化視覺檢測系統之探討」,碩士論文,私立朝陽科技大學工業工與管理程研究所。劉國慶,2003年,「利用磁振造影的血流灌注影像分割技術來評估腦部疾病」,碩士論文,國立陽明大學放射醫學科學研究所。洪至懿,2003年,「特徵擷取與分類應用與想像左右手手指運動之腦波辨識」,碩士論文,國立陽明大學放射醫學科學研究所。曾彥馨,2003年,「應用機器視覺於TFT面板之表面瑕疵檢測與分類」,碩士論文,私立元智大學工業與管理工程研究所。林品杰,2005年,「應用獨立成份分析(ICA)濾波器於背光板與TFT-LCD面板之瑕疵檢測」,碩士論文,私立元智大學工業與管理工程研究所。Bartlett, M. S., J. R. Movellan and T. J. Sejnowski, 2002, “Face recognition by independent component analysis,’’ IEEE Transactions on Neural Networks, Vol. 13, pp. 1450-1464.
Boscolo R., H. Pan, P. Roychowdhury, 2004, “Independent Component Analysis Based Nonparametric Density Estimation,” IEEE Transaction on Neural Networks, Vol. 15, pp. 55-65.
Collins, R. T., A. J. Lipton and T. Kanade, 2000, “A system for video surveillance and monitoring.” VSAM final report. Carnegie Mellon University, Technical Report, CMU-RI-TR-00-12, 2000.
Comon, P., 1994, “Independent component analysis: a new concept?,’’ Signal Processing, Vol. 36, pp. 287-314.
Cutler, R and L. R. Davis, 2000, “Real-time periodic motion detection, analysis, and applications.” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, pp. 781-796.
Eberhart, R. C. and J. Kennedy, 1995, “A new optimizer using particle swarm theory,’’ Proceeding of Sixth International Symposium on Micro Machine and Human Science, IEEE Service Center, Nagoya, Japan, pp. 39-43.
Haritaoglu I., D. Harwood and L. Davis, 2000, “Real-time surveillance of people and their activities,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, pp. 809-830.
Hawthorne J., 2000, “Electro-optics technology test flat-panel displays,” Automated Testing, May, pp. 271-276.
Hu W., T. Tan, L. Wang and S. Maybank, 2004, “A survey on visual surveillance of object motion and behaviors,” IEEE Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews, Vol. 34, pp. 334-352.
Hung C. I, P. L. Lee, Y. T. Wu, L. F. Chen, T. C. Yeh, J. C. Hsieh, 2005, “Recognition of Motor Imagery Electroencephalography Using Independent Component Analysis and Machine Classifiers.” Annals of Biomedical Engineering, Vol. 33, pp. 1053-1070.
Hyvärinen, A. P. Hoyer and E. Oja, 1998, “Sparse code shrinkage for image denoising,’’ Proceedings of IEEE International Joint Conference on Neural Networks, Anchorage, Alaska, pp. 859-864.
Hyvärinen, A., 1998, “New approximations of differential entropy for independent component analysis and projection pursuit,’’ In Advances in Neural Information Processing Systems, pp. 273-279.
Hyvärinen, A., 1999a, “The fixed-point algorithm and maximum likelihood estimation for independent component analysis,’’ Neural Processing Letters, Vol. 10, pp. 1-5.
Hyvärinen, A., 1999b, “Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation,’’ Neural Computation, Vol. 11, pp. 1739-1768.
Hyvärinen, A., 1999c, “Fast and robust fixed-point algorithms for independent component analysis,’’ IEEE Trans. on Neural Networks, Vol. 10, pp. 626-634.
Hyvärinen, A. and E. Oja, 2000, “Independent component analysis: algorithms and applications,’’ Neural Networks, Vol. 13, pp. 411-430.
Hyvärinen, A., P. Hoyer and E. Oja, 2001a, “Image denoising by Sparse code shrinkage,’’ In: Intelligent Signal Processing (Ed. S. Haykin and B. Kosko), IEEE Press, New York, pp. 554-568.
Ikeda, S. and K. Toyama, 2000, “Independent component analysis for noisy data-MEG data analysis,’’ Neural Networks, Vol. 13, pp. 1063-1074.
Jenssen, R. and T. Eltoft, 2003, “Independent component analysis for texture segmentation,’’ Pattern Recognition, Vol. 36, pp. 2301-2315.
Kao Y. H., W. Y. Guo, Y. T. Wu, K. C. Liu,W. Y. Chai, C. Y. Lin, Y. S. Hwang, A. K. Liou, H. C. Cheng, T. C. Yeh, J. C. Hsieh, M. M. H. Teng, 2003, “Hemodynamic Segmentation of MR Brain Perfusion Images Using Independent Component, Bayesian Estimation and thresholding,” Magnetic Resonance in Medicine, Vol. 49, pp.885-894.
Kido. T., 1992, “In-process inspection technique for active-matrix LCD panels,” International Test Conference, Maryland, USA, pp. 795-799.
Kido. T., 1993, “In-process functional inspection technique for TFT-LCD array,” Journal of SID, Vol. 1, pp. 429-435.
Kido. T., 1995, “Optical charge-sensing method for testing and characterizing thin-film transistor array,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 1, pp. 993-1001.
Kim, J. H., S. Ahn., J. W. Jeon, and J. E. Byun, 2001, “A high-speed high-resolution vision system for the inspection of TFT LCD,” IEEE International Symposium on Industrial Electronics, Vol. 1, pp. 12-16.
Lipton A, H. Fujiyoshi and R. Patil, 1998, “Moving target classification and tracking from real-time video.” In: Proc. IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 8-14.
Meyer D, J. Denzler and H. Niemann, 1997, “Model based extraction of articulated objects in image sequences for gait analysis.” In: Proc. IEEE International Conference on Image Processing, Santa Barbara, California pp. 78-81.
Roehrig, H., E. A. Krupinski, A. S. Chawla, J. Fan, K.Gandh, T. Furukawa, and M. Ohashii, 2003, “Noise of LCD display systems,” International Congress Series, Vol. 1256, pp. 162-168.
Roehrig, H., E. A. Krupinski, J. Fan, and K.Gandhi, 2004, “Physical and psychophysical evaluation of LCD noise,” International Congress Series, Vol. 1268, pp. 341-346.
Salman, A., I. Ahmad and S. Al-Madani, 2002, “Particle swarm optimization for task assignment problem,”Microprocessors and Microsystems, Vol. 26, pp. 363-371.
Shi, Y. and R. C. Eberhart, 1998, “A modified particle swarm optimizer,’’ ” In: Proc. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp. 69-73.
Stauffer C and W. A. Grimson, 1999, “Background mixture models for real-time tracking.” In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, pp. 246-252.
Tsai D. M. and C. Y. Hung, 2005, “Automatic Defect Inspection of Patterned TFT-LCD Panels Using 1-D Fourier Reconstruction and Wavelet Decomposition,” International Journal of Production Research, Vol 43, pp. 4589-4607