跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱致名
研究生(外文):Zhi-Ming Chu
論文名稱:類神經網路應用於系統感測器失效偵測之研究
論文名稱(外文):Research on Neural Networks Applied to Sensors Fault Detection
指導教授:陳以明陳以明引用關係
指導教授(外文):Yee-Ming Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:類神經網路感測器失效偵測殘差臨限值
外文關鍵詞:Neural networksSensorsFault detectionRedundancyThreshold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現代科技產業中量測系統技術被普遍使用,尤其當感測器失效偵測及隔離是避免裝備損壞、確保系統性能與可靠度的重要關鍵。本研究探討類神經網路在感測器失效偵測之應用,類神經網路具有分散式平行處理、學習能力的優點,可運用來估測感測器運作狀態,處理即時性的失效與判別。本文提出失效偵測模式並以F-16飛機操控系統感測器為研究對象,以飛機正常飛行及各種系統感測器失效狀況模擬,運用訓練過的類神經網路進行狀態估測值與感測器量測值之殘差計算,再配合失效偵測模式中的偵測邏輯及臨限值設定與判斷,達到感測器之失效偵測。最後以三種不同失效類型驗證分析,以驗證其偵錯能力。
The paper investigates the application of sensor fault detection design in neural networks. The sensor technology is a key point for avoiding break down with equipment and ensuring the running and reliability of system in industry for sensor fault detection and isolation. Neural networks(NNs) used to provide analytical redundancy to estimate working status for sensor and to treat real fault detection and judgment in detection logic, because they have the following advantages: robustness against unmodeled dynamics, capability of handing nonlinear dynamics, modular and systematic design, and potential for unanticipated failures. It’s show that program to construct flying condition via F-16 aircraft model and to collect regular and fault information as well. The developed back propagation NNs were trained flying information, and then, to fulfill detection by residuals from comparing the NNs output with the sensor output. The faults decision employed logic detection and threshold value setting in the proposed fault detection mode. Finally, the paper verify it’s detects ability among three various fault type analysis.
中文摘要I
英文摘要II
誌謝III
目錄IV
表目錄VI
圖目錄VII
符號說明IX
第一章 緒論1
1.1研究緣起及背景1
1.2研究目的3
1.3研究方法與架構4
1.4論文大綱6
第二章文獻探討7
2.1感測器失效偵測7
2.2類神經網路架構11
2.2.1類神經網路模式分類11
2.2.2倒傳遞類神經網路13
2.3F-16飛機背景介紹20
第三章飛機模式之建立22
3.1運動座標22
3.2F-16飛機數學模式23
3.3F-16飛機模式建構27
3.4F-16飛機正常飛行模式30
3.5飛機失效狀況分析33
3.6飛機失效狀況之感測器敏感度分析42
第四章失效偵測模式建立45
4.1類神經網路運算流程46
4.2偵測邏輯48
4.3偵測臨限值設定52
4.4感測器失效偵測模擬分析53
4.5本章小結61
第五章結論與未來研究方向62
5.1結論62
5.2未來研究方向63
參考文獻64
[1] P.M. Frank, “Enhancement of robustness in observer-based fault detection”, Int. J. Control ,59, 955–981 (1994).
[2] Willsky, A.S.“A Survey of Design Methods for failure Detection in Dynamic System”, Automatica 12:60, pp601-611,1976.
[3] R. Milne, “Strategies for diagnosis,” IEEE Trans. Syst., Man, Cybern.,vol. SMC-17, pp. 333–339, May/June 1987.
[4] R. Isermann and P. Balle, “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Eng. Practice, vol.5, no.5, pp.709-719, May 1997.
[5] J. J. Gertler, “Survey of Model-based Failure Detection and Isolation in Complex Plants,” IEEE Control Systems Magazine, pp.3-10, Dec. 1998.
[6] G. Betta and A. Pietrosanto, “Instrument Fault Detection and Isolation:State of the Art and New Research Trends,” IEEE Instrumentation and Measurement Technology Conference, St Paul, Minnesota, USA, pp.483-489, May 1998.
[7] H. Wang and S. Daley, “Actuator Fault Diagnosis:An Adaptive Observer-Based Technique,” IEEE Trans. Automatic Control, vol.41, no.7, pp.1073-1078, 1996.
[8] J. Gertler, “Fault Detection and Isolation Using Parity Relations,” Control Eng. Practice, vol.5, no.5, pp.653-661, 1997.
[9] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Palo Alto, CA, Morgan Kaufmann, 1988.
[10] J. Korbicz and C. Cempel (eds.), “Analytical and knowledgebased redundancy in fault detection and diagnosis”, Appl. Math. and Comp. Sci., Spec. Issue 3 (3), (1993).
[11] J.M.F. Calado, J. Korbicz, K. Patan, R.J. Patton, and J.M.G. Sá da Costa, “Soft computing approaches to fault diagnosis for dynamic systems”, European Journal of Control.
[12] J. Korbicz, “Advances in fault diagnosis systems”, Proc. 10th IEEE Int. Conf. on Methods and Models in Automation and Robotics MMAR, 725–733 (2004).
[13] J. Korbicz, J.M. Ko´scielny, Z. Kowalczuk, and W. Cholewa (eds.), Fault Diagnosis. Models, Artificial Intelligence, Applications.Berlin: Springer-Verlag, 2004.
[14] J.korbicz, “Robust fault detection using analytical and soft computing methods”, Bulletin of the polish academy of sciences technical sciences , Vol. 54, No. 1, 2006.
[15] Guillermo Heredia, Anibal Ollero, Rajesh Mahtani and Manuel Bejar, “Detection of Sensor Faults in Autonomous Helicopters”, IEEE International Conference on Robotics and Automation(ICRA 2005),Barcelona,Spain,Aprio 2005.
[16] Lennon R. Cork, Rodney Walker, Shane Dunn, “Fault Detection, Identification and Accommodation Techniques for Unmanned Airborne Vehicle”, In Proceedings Australian International Aerospace Congress, Melbourne, 13 July 2006.
[17] David G. Frazer, Marcello R. Napolitano, Parviz Famouri, “A Neural Network-Based Sensor Validation Scheme Within Aircraft Control Laws”, Lane Department of Computer Science and Electrical Engineering Morgantown, West Virginia 2001.
[18] Rosenblatt, F., “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological Review 65, 1958, pp. 386-408.
[19] 葉怡成,「類神經網路模式應用與實作」,儒林圖書有限公司,臺北。
[20] 張智星, 「MATLAB程式設計與應用」,清蔚科技出版(2000).
[21] 李明倫,“類神經網路應用於系統偵錯之研究”,中正理工學院兵器系統工程研究所碩士論文,1997。
[22] 楊繼泰,“系統容錯控制之研究”,元智大學工業工程與管理研究所碩士論文,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊