Arfin, S. M., and Umbarger, H. E. (1969). Purification and properties of the acetohydroxy acid isomeroreductase of Salmonella typhimurium. J Biol Chem 244, 1118-1127.
Arima, K., Kakinuma, A., and Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31, 488-494.
Banerjee, S., and Hansen, J. N. (1988). Structure and expression of a gene encoding the presursor of subtilin, a small protein antibiotic. J Biol Chem 263, 9508-9514.
Biswas, I., Gruss, A., Ehrlich, S. D., and Maguin, E. (1993). High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175, 3628-3635.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Chen, C. L., Chang, L. K., Chang, Y. S., Liu, S. T., and Tschen, J. S. (1995). Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Mol Gen Genet 248, 121-125.
Cohen, S. N., Chang, A. C., and Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69, 2110-2114.
Desai, J. D., and Desai, A. J. (1993). Surfactant science series, In Production of biosurfactants, N. Kosaric, ed. (Basel and Hong Kong), pp. 65-97
Dubnau, D., and Davidoff-Abelson, R. (1971). Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol 56, 209-221.
Fuma, S., Fujishima, Y., Corbell, N., D''Souza, C., Nakano, M. M., Zuber, P., and Yamane, K. (1993). Nucleotide sequence of 5'' portion of srfA that contains the region required for competence establishment in Bacillus subtilus. Nucleic Acids Res 21, 93-97.
Hemila, H., Palva, A., Paulin, L., Arvidson, S., and Palva, I. (1990). Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J Bacteriol 172, 5052-5063.
Holmes, D. S., and Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114, 193-197.
Imanaka, T., Fujii, M., Aramori, I., and Aiba, S. (1982). Transformation of Bacillus stearothermophilus with plasmid DNA and characterization of shuttle vector plasmids between Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol 149, 824-830.
Jung, G. (1991). Lantibiotics-ribosomally Synthetisized biologylly active Polypeptids containing sulfide bridges and α, β-didehydroamino acid. Angew Chemical International Ed England 30, 1051-1068.
Kakinuma, A., Hori, M., Isono, M., Tamura, G., and Arima, K. (1969). Determination of amino acid sequence in furfactin, a crystalline peptidolipid surfactant produced by Bacillus subtilis. Agric Biol Chem 33, 971-997.
Kleinkauf, H., and Von Dohren, H. (1996). A nonribosomal system of peptide biosynthesis. Eur J Biochem 236, 335-351.
Kleinkauf, H., and von Dohren, H. (1997). Enzymatic generation of complex peptides. Prog Drug Res 48, 27-53.
Kratzschmar, J., Krause, M., and Marahiel, M. A. (1989). Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171, 5422-5429.
Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessieres, P., Bolotin, A., Borchert, S., et al. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249-256.
Lai, E. M., Phadke, N. D., Kachman, M. T., Giorno, R., Vazquez, S., Vazquez, J. A., Maddock, J. R., and Driks, A. (2003). Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J Bacteriol 185, 1443-1454.
Lambalot, R. H., Gehring, A. M., Flugel, R. S., Zuber, P., LaCelle, M., Marahiel, M. A., Reid, R., Khosla, C., and Walsh, C. T. (1996). A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol 3, 923-936.
Leyva-Vazquez, M. A., and Setlow, P. (1994). Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis. J Bacteriol 176, 3903-3910.
Massey, V. (1963). Lipoyl dehydrogenase, In The Enzymes, P. D. Boyer, Lardy, H. and Myrbäck, K. , ed., pp. 275-306.
Massey, V., Gibson, Q. H., and Veeger, C. (1960). Intermediates in the catalytic action of lipoyl dehydrogenase (diaphorase). Biochem J 77, 341-351.
Meyer-Arendt, E., Beisenherz, G., and Bücher, T. (1953). Triosephosphate isomerase. Naturwissenschaften 40, 59.
Meyerhof, O., and Beck, L. V. (1944). Triosephosphate isomerase. J Biol Chem 156, 109-120.
Mootz, H. D., and Marahiel, M. A. (1997). The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179, 6843-6850.
Nakano, M. M., Marahiel, M. A., and Zuber, P. (1988). Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 170, 5662-5668.
Omura, S., Iwai, Y., Masuma, R., Hayashi, M., Furusato, T., and Takagaki, T. (1980). A new peptide antibiotic, alboleutin. J Antibiot (Tokyo) 33, 758-759.
Peypoux, F., Bonmatin, J. M., and Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51, 553-563.
Pfeifer, E., Pavela-Vrancic, M., von Dohren, H., and Kleinkauf, H. (1995). Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Biochemistry 34, 7450-7459.
Sahl, H. G. (1991). Pore formation in bacterial membrane by cationic lantibioticd, In Nisin and Novel Lantibiotics., pp. 347-358.
Schuermann, M., and Sprenger, G. A. (2001). Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 276, 11055-11061.
Siezen, R. J., Kuipers, O. P., and de Vos, W. M. (1996). Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek 69, 171-184.
Singh, P., and Cameotra, S. S. (2004). Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22, 142-146.
Stachelhaus, T., Schneider, A., and Marahiel, M. A. (1996). Engineered biosynthesis of peptide antibiotics. Biochem Pharmacol 52, 177-186.
Stein, T., Vater, J., et al., (1996). The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 271, 15428-15435.
Trach, K., Chapman, J. W., Piggot, P., LeCoq, D., and Hoch, J. A. (1988). Complete sequence and transcriptional analysis of the spo0F region of the Bacillus subtilis chromosome. J Bacteriol 170, 4194-4208.
Wei Y. H., Wang, L. F., Chang, J. S. and Kung, S. S. (2003). Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. J. Biosci. Bioeng 96, 174-178.
Wang, P. Z., and Doi, R. H. (1984). Overlapping promoters transcribed by bacillus subtilis σ55 and σ37 RNA polymerase holoenzymes during growth and stationary phases. J Biol Chem 259, 8619-8625.
Zuber, P., Nakano, M. M., and Marahiel, M. A. (1993). peptide antibiotics, In Bacillus subtilis and other gram-positive bacteria, A. L. Sonenshein, J. A. Hoch, and e. R. Losick, eds. (Washington, D C.: American Society for Microbiogy), pp. 897-916.
陳奇良 (1995). 枯草桿菌(B. subtilis)F29-3中豐原素合成基因的分析. 國立中興大學植物學研究所博士論文.魏毓宏 (2001). 二價金屬無機鹽類之添加對生物界面活性劑表面素生產之影響. 化工 48, 1-8.