跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃珽瓚
研究生(外文):Ting-Tsan Huang
論文名稱:增益箝制與平坦化的摻餌光纖放大器及光纖雷射之研究
論文名稱(外文):Study of Gain Flattened and Clamped Erbium-Doped Fiber Amplifier and Fiber Laser
指導教授:祁甡祁甡引用關係
指導教授(外文):Sien Chi
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:49
中文關鍵詞:摻餌光纖放大器迴路雷射
外文關鍵詞:EDFAFiber Ring Laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的第一部份提出一可同時達到增益箝制與平坦化之二級摻鉺光放大器模組,在操作波長 1530 nm 至 1564 nm 之間時,分別以輸入功率 -15 dBm 及 -40 dBm 的光訊號注入系統,可在此波段得到最大增益變化量分別為 0.8 dB 及 1.8 dB。同時我們觀察以輸入光功率 -15 dBm 至 -40 dBm 的範圍注入系統,對單一波長之最大增益差發生在波長 1556 nm,其增益差值為 2.7 dB。
在第二個部份,我們利用三環迴路型雷射架構提出一可調且穩定之S頻段單縱模摻鉺光纖放大器,藉由不同共振腔長度所形成的共振條件可使此架構達到單縱模之輸出。同時我們在主環腔內放置一可調的 Fabry-Perot 濾波器,使此架構達成可調且穩定的雷射輸出。
In the first part of the thesis, we propose and investigate experimentally a gain-flattened and gain-clamped two-stage erbium-based fiber amplifier (EBFA) module. The maximum gain variations of ±0.8 and ±1.8 dB are observed in an operating range of 1530 to 1564 nm, when the input signal powers are 15 and ?{40 dBm, respectively. In a 25 dB dynamics input signal power range from ?{15 to ?{40 dBm over the operating range, the maximal gain difference of 2.7 dB is also retrieved at 1556 nm for the GF and GC erbium amplifier.
In the second part of the thesis, We propose and demonstrate a tunable and stable single-longitudinal-mode (SLM) erbium fiber laser with a passive triple-ring cavity structure in S-band operation. The proposed laser is fundamentally structured by using three different lengths of ring cavities, which serve as the mode filters. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable and stable SLM laser oscillation.
Contents
Abstract (Chinese)…………………………………………………II
Abstract (English)……………………………………………… III
Acknowledgements……………………………………………………IV
Contents………………………………………………………………V
List of Figures……………………………………………………VII




CHAPTER 1
Introduction
1.1 Overview 1
1.2 Organization of the Thesis 4

CHAPTER 2
Principles
2.1 Erbium-Doped Fiber Amplifier (EDFA) 5
2.1.2 Small Signal Gain 11
2.2 Noise Figure 15
2.3 Gain-Clamping Technique 18

CHAPTER 3
Simultaneously Gain-Flattened and Gain-Clamped Two-Stage Erbium Amplifier
3.1 Introduction 20
3.2 Experimental Setup 21
3.3 Experimental Results 22
3.4 Conclusion 27

CHAPTER 4
Stabilized and Tunable Erbium-Based Ring Laser with Single-Longitudinal-Mode
4.1 Introduction 37
4.2 Experimental Setup 38
4.3 Experimental Results 39
4.4 Conclusion 41

CHAPTER 5
Conclusion 46

Reference 47
Reference
[1]G. Keiser, “Optical Fiber Communications,” 3rd ed., McGraw-Hill, New York, 2000.
[2]S. Shimada, H. Ishio, “Optical Amplifiers and their Applications,” John Wily & Sons, New York, 1994.
[3]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers Fundamentals and Technology,” Academic Press, 1999.
[4]M. Cai, X. Liu, J. Cui, M. Leblance, P. Tang, and J. Peng, “Study on Noise Characteristic of Gain-Clamped Erbium-Doped Fiber-Ring Lasing Amplifier,” IEEE Photon. Technol. Lett., vol. 9, pp. 1093-1095, 1997.
[5]Zirngibl, “Gain control in erbium-doped fiber amplifiers by an all optical feedback loop,” Electron. Lett., vol. 27, no. 7, pp. 560–561, 1991.
[6]Y. H. Lu and S. Chi, “Two-stage L-band EDFA applying C/L-band wavelength-division multiplexer with the counterpropagating partial gain-clamping,” IEEE Photon. Technol. Lett., vol. 15, pp. 1710–1712, 2003.
[7]M. A. Mahdi, P. Poopalan, S. Selvakennedy, N. Ismail, and H. Ahamad, “All optical gain-locking in erbium-doped fiber amplifiers using double-pass superfluorescence,” IEEE Photon. Technol. Lett., vol. 11, pp. 1581–1583, 1999.
[8]M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photon. Technol. Lett., vol. 8, pp. 882–884, 1996.
[9]M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long period fiber gratings for EDFA gain and ASE equalization,” Microwave Opt. Technol. Lett., vol. 25, pp. 181–184, 1999.
[10]P. F. Wysocki, J. B. Judkins, R. P. Espindola, M. Andrejco, and A. M. Vengsarkar, “Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter,” IEEE Photon. Technol. Lett., vol. 9, pp. 1343–1345, 1997.
[11]S. K. Liaw, K. P. Ho, and S. Chi, “Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 11, pp. 797–799, 1999.
[12]R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, “Acoustooptic attenuation filters based on tapered optical fibers,” IEEE J. Select. Top. Quantum Electron., vol. 5, pp. 1278–1288, 1999.
[13]S. K. Yun, B. W. Lee, H. K. Kim, and B. Y. Kim, “Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filter,” IEEE Photon. Technol. Lett., vol. 11, pp. 1229–1231, 1999.
[14]J. Nilsson, W. H. Loh, S. T. Hwang, J. P. de Sandro, and S. J. Kim, “Simple gain-flattened erbium-doped fiber amplifier with a wide dynamic range,” in Opt. Fiber Commun. Conf. Washington, DC: Optical Society of America, 1997, OSA Tech. Dig., p. 163.
[15]R. A. Betts, S. J. Frisken, and D. Wong, “Split-beam Fourier filter and its application in a gain-flattened EDFA,” in Opt. Fiber Commun. Conf.. Washington, DC: Opt. Soc. Amer., 1995, OSA Tech. Dig. Series, pp. 80–81.
[16]C. H. Yeh, C. C. Lee, C. Y. Chen, and S. Chi, “S-Band Gain-Clamped Erbium-Doped Fiber Amplifier by Using Optical Feedback Method,” IEEE Photon. Technol. Lett., vol. 16, pp. 90–92, 2004.
[17]K. Inoue, “Gain-clamped fiber amplifier with a loop mirror configuration,” IEEE Photonics Technol. Lett., vol. 5, pp. 533-535, 1999.
[18]Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett., vol. 20, pp. 875–877, 1995.
[19]Y.W. Song, S. A. Havstad, D. Starodubopv, Y. Xie, A. E.Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1167–1169, Nov. 2001.
[20]N. J. C. Libatique, L. Wang, and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Opt. Exp., vol. 10, pp. 1503–1507, 2002
[21]M. Horowitz, R. Daisy, B. Fisher, and J. Zyskind, “Narrow-linewidth, singlemode erbium-doped fiber laser with intracavity wave mixing in saturable absorber,” Electron. Lett., vol. 30, pp. 648–649, 1994.
[22]J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightw. Technol., vol. 14, no. 1, pp. 104–109, Jan. 1996.
[23]S. K. Kim, G. Stewart, W. Johnstone, and B. Culshaw, “Mode-hop-free single-longitudinal-mode erbium-doped fiber laser frequency scanned with a fiber ring resonator,” Appl. Opt., vol. 38, pp. 5154–5157, 1999.
[24]C. H. Yeh, C. C. Lee, and S. Chi, “A Tunable S-Band Erbium-Doped Fiber Ring Laser,” IEEE Photon. Technol. Lett., vol. 15, pp. 1503–1504, 2003.
[25]H. Chen, F. Babin, M. Leblanc, G. He, G. W. Schinn, “Widely tunable S-band fiber-ring lasers and broadband amplified spontaneous emission sources with thulium-doped fluoride fibers,” J. Lightw. Technol., vol. 21, pp. 1629–1634, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top