(3.235.108.188) 您好!臺灣時間:2021/03/07 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴振立
研究生(外文):Cheng-Lee Lai
論文名稱:電解混凝沉澱程序處理半導體化學機械研磨廢水之研究
論文名稱(外文):Electrocoagulation and Settled Process of Chemical Mechanical Polishing Wastewater from Semiconductor Fabrication
指導教授:林勝雄林勝雄引用關係
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:197
中文關鍵詞:化學機械研磨銅製程電解混凝法冷凍解凍法濁度去除銅離子去除污泥沈降速率
外文關鍵詞:CMP wastewaterElectrocoagulationCopper and COD removalSludge settling velocityFreeze/thaw
相關次數:
  • 被引用被引用:5
  • 點閱點閱:409
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
積體電路製程中的銅導線製程需要利用化學機械研磨(CMP)技術除去晶圓上多餘的薄膜,讓整個晶圓平坦化,但由於此項技術使用頻繁且需要大量高純水來進行晶圓清洗動作,所以屬於高污染的製程。從實際半導體廠取回的廢水中含有高界達電位(Zeta potential)的微粒、高懸浮固體濃度(SS),超過排放標準的化學需氧量(COD)值以及銅離子濃度,造成環境污染與處理的困難。本研究利用電解混凝法(EC),對實廠的化學機械研磨含銅廢水進行處理,並自行改良電解凝聚設備,另外,針對處理過程產生的污泥做沉降性質與脫水的探討。本研究也使用冷凍解凍法去除污泥中多餘的水分,達到污泥減量的目的。
在分析廢水水質實驗中,發現懸浮顆粒平均粒徑約為100 nm,界達電位-43 mV,COD高達370 mg/L、濁度在52~180濁度單位(NTU)之間,銅離子濃度為45~120 mg/L。本實驗探討各變因如電極種類、電聚時間、電流密度、電極板距離、鹽類添加量、混凝劑與助凝劑添加量等對處理效果的影響。由結果得知,使用鋁電極的效果最佳,在六片電極及電流密度382.2 A/m2等最佳條件下只需要電解混凝15 min,Cu-CMP廢水的濁度去除率達96.5%,使處理後上層液濁度小於1 NTU,COD去除率為75%,使廢水濃度低於50 mg/L以下,銅離子去除率約99%,排放水濃度低於1 mg/L,皆符合放流水標準,並可以回收再利用。
使用鋁電極所產生的氫氧化鋁,以及捕集的化學研磨顆粒,會產生大量的污泥,而污泥的沉澱速率將影響到沉澱槽的尺寸設計,實驗發現固定污泥沉降管柱的管徑/高度比就能控制同樣的沈降條件。另外,可以利用數學模式計算沉澱速率、固體通量與沉澱槽的尺寸關係,並發現Cho等學者所推導的3rd order model、4rd order model 以及complicated exponential model可以適切的描述污泥沉澱速率與污泥濃度的關係,亦可以此結果推估沉澱槽的尺寸。
本研究使用冷凍解凍法嘗試減少電解混凝Cu-CMP廢水後產生的污泥體積以及脫除污泥中的水分,實驗發現冷凍解凍法可以有效的將污泥脫水,電解混凝後污泥體積為215 mL,冷凍解凍後體積減至10.2 mL,總固體濃度則是從19.1提高至276.8 g/L,含水量由98.2減少至61%。結果證明冷凍解凍法可以有效的減少電解混凝法所產生的污泥體積與其含水量。
Treatment of Cu chemical mechanical polishing (CMP) wastewater from a semiconductor plant by electrocoagulation was investigated. The CMP wastewater, as obtained from a large semiconductor plant, was characterized by high suspended solids (SS) content, high turbidity (NTU), chemical oxygen demand (COD) concentration up to 370 mg/L, and copper concentration up to 120 mg/L. Conventional methods had difficulties in satisfactorily dealing with this wastewater. This study was to investigate the feasibility of treating the CMP wastewater by electro-coagulation with an aim to simultaneously lowering the wastewater turbidity, copper, and COD content. Experiments were conducted to assess the effects of electrocoagulation time and electrolyte dosage on the system performances. The test results revealed that the electrocoagulation with three Al/Al electrode pairs and current density 382.2 A/m2 was found to be very efficient and able to achieve 99% copper ion and 96.5% turbidity removal in less than 15 min. The COD removal obtained in the treatment was higher than 75%, with an effluent COD below 50 mg/L. This discharge wastewater could meet the water quality standard and the effluent of water can be considered for recycling.
Sludge settling velocities after electrocoagulation were measured and the data were employed to validate the empirical sludge settling velocity models proposed. The sludge settling characteristic data was also utilized to establish the relation between the solid fluxes and the initial solids concentration. In addition, models fit of the observed sludge settling velocity data indicates that the complex models, including the 3rd order, 4th order, and these of Cho et al. (1993), describe the data significantly better than the simple power and exponential ones alternatives. Finally, the solid fluxes determined the settling velocity curve shows a skewed distribution and the solid fluxes curve facilitates design of the sludge settling tank.
Low-temperature treatment of sludges generated from Cu-CMP wastewater was investigated. Freeze/thaw conditioning effectively dewaters sedimentary sludge obtained from the electrocoagulation of Cu-CMP wastewater. This study was to explore the feasibility of treating sediment of electrocoagulation method by freeze/thaw conditioning process with an aim to decrease sludge volume. After freeze/thaw conditioning, the sludge volume ranged from 215 to 10.2 mL. Total solid concentration increased from 19.1 to 276.8 g/L and moisture of the sludges decreased from 98.2 to 61%. Bonding energy of moistly sludge solids was also estimated according to these experimental data. In addition, the effect of flocculation on the moisture distribution of the sludges was revealed. These results indicated that the freeze/thaw conditioning technique is a practicable technology for treating sludges generated from Cu-CMP wastewater.
中文摘要 I
ABSTRACT III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 半導體製程與化學機械研磨技術 3
1.2.1 鋁金屬導線 3
1.2.2 銅金屬導線 3
1.2.3 化學機械研磨 4
1.3 研磨液 5
1.4 半導體業用水與回收 9
1.5 研究目的 11
第二章 文獻回顧與理論分析 13
2.1 CMP-CU製程與廢水處理 13
2.1.1 製程廢水簡介 13
2.1.2 CMP廢水處理 14
2.2 電解氧化處理廢水之應用 16
2.3 電解混凝法 18
2.3.1 原理 18
2.3.2 特性 19
2.3.3 操作變因 20
2.3.4 應用 23
2.3.5 電能消耗表示法 27
2.3.6 理論金屬溶出量 28
2.3.7 金屬去除之電流效率 29
2.3.8 電場中電泳效應 29
2.4 污泥沉澱速率 34
2.4.1 沉降簡介 34
2.4.2沉澱理論 38
2.5冷凍解凍污泥脫水法 44
2.5.1 冷凍/解凍法的簡介 44
2.5.2 冷凍/解凍法的機制 45
2.5.3 影響冷凍/解凍法的因素 46
第三章 研究設備與方法 49
3.1 實驗樣品 49
3.2 實驗藥品 50
3.3 實驗設備與分析方法 51
3.3.1 水質分析方法 51
3.3.2 分析設備 51
3.4 分析儀器 53
3.4.1 穿透式電子顯微鏡 53
3.4.2 場發掃描式電子顯微鏡 55
3.4.3 原子吸收光譜 57
3.4.4 總有機碳分析 59
3.4.5粒徑分析 62
3.4.6 感應耦合電漿原子發射光譜儀 65
3.5 研究方法與設備 67
3.5.1 電解混凝研究方法 67
3.5.2 電解混凝研究設備 68
3.5.3 污泥沉澱性質部分 73
3.5.4 冷凍解凍脫水法 73
第四章 結果與討論 74
4.1 化學機械研磨液與廢水分析 74
4.1.1水質分析 74
4.1.2 粒徑分析 76
4.1.3 界達電位分析 80
4.1.4 場發型掃描式及穿透式電子顯微鏡 82
4.1.5 Cu-CMP廢液性質之綜合分析 86
4.2 電極對電解混凝的影響 88
4.3 電流密度的影響 94
4.4 電解質對電解混凝的影響 101
4.5 電解混凝對水質的影響 109
4.5.1 界達電位 109
4.5.2 溫度 111
4.5.3 銅離子的去除 118
4.5.4 pH值 123
4.6 電場中電泳的影響 125
4.7 污泥沉澱速率 129
4.8 污泥濃度與沉澱速率的關係 137
4.9 電解槽操作參數 143
4.9.1 電極距離 143
4.9.2 攪拌的影響 147
4.9.3 電極板數量 148
4.9.4 三對電極排列方式的影響 150
4.9.5 三對電極電解混凝實驗 153
4.9.6 溫度的影響 160
4.9.7 進料方式的影響 162
4.10 冷凍解凍污泥脫水法 164
4.10.1 冷凍溫度及降溫速率的影響 164
4.10.2 電極種類的影響 167
4.10.3 冷凍解凍過程的反應機制 170
4.11 電解混凝沉降程序 177
4.11.1 設計基準(Design basis) 178
4.11.2 單元尺寸設計 178
第五章 結論 180
參考文獻 182
1.Gilles, D. G. and Loehr, R. C., Waste Generation and Minimization in Semiconductor Industry. Journal of Environmental Engineering, 120(1), 72-86 (1994).
2.Fury, M. A., Emerging Developments in CMP for Semiconductor Planarization. Solid State Technology, 38(4), 47-54 (1995).
3.Chen, W. C. and Yen, C. T., Chemical-Mechanical Polishing of Low Dielectric Constant Poly (silsesquioxane): HSQ. Journal of Polymer Research, 6(3), 197-211 (1999).
4.Steigerwald, J. M., Murarka, S. P. and Gutmann, R. J., Chemical Mechanical Planarization of Microelectronic Materials. John Wiley &Sons Inc., New York (1997).
5.Mueller, B. L. and Steckenrider, J. S., Polishing Surfaces for Integrated Circuits. Chemical Technology, 28-38 (1998).
6.Steigerwald, J. M., Murarka, S. P., Gutmann, R. J. and Duquette, D. J., Chemical Processes in The Chemical Mechanical Polishing of Copper. Materials Chemistry and Physice, 41(3), 217-228 (1995).
7.楊正杰、張鼎張、鄭晃忠,銅金屬與低介電常數材料與製程,工業材料,167,121-126 (2000)。
8.Kaufman, F. B., Thompson, D. B., Broadie, R. E., Jaso, M. A., Guthrie, W. L., Pearson, D. J. and Small, M. B., Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects. Journal Electrochemical Society, 138(11), 3460-3464 (1991).
9.Browne, S., Krygier, V. and Sandstrom, E. L., Treating Wastewater from CMP using Ultrafiltration. MICRO, 17(3), 77-82 (1999).
10.Zeidler, D., Stavreva, Z., Plotner, M. and Drescher, K., Characterization of Cu Chemical Mechanical Polishing by Electrochemical Investigations. Microelectronic Engineering, 33(1), 259-265 (1997).
11.Gutmann, R. J., Steigerwald, J. M., You, L., Price, D. T., Neirynck, J., Duquette, D. J. and Murarka, S. P., Chemical-Mechanical Polishing of Copper with Oxide and Polymer Interlevel Dielectrics. Thin Solid Films, 270(1), 596-600 (1995).
12.Dustin, J., Deon, C., Jereme, F., Thuy, N. and Daun, B., A Process for Efficient Treatment of Cu CMP Wstewater. Semiconductor International, 23(5), 8-16 (2000).
13.Bibby, T. F. A., Adams, J. A., Holland, K., Krulik, G. A. and Parikh, P., CMP CoO Reduction: Slurry Reprocessing. Thin Solid Films, 308(1), 538-542 (1997).
14.李臻誠,晶圓化學機械研磨之研磨液流場及磨潤性能理論分析與實驗,碩士論文,國立成功大學機械工程學系(1998)。
15.吳心玲,氧化鋁漿體的穩定性研究,碩士論文,國立成功大學(2000)。
16.王建榮、林慶福、林必窕,半導體平坦化CMP技術,全華圖書,台北(1999)。
17.Hartmannsgruber, E., Zwicker, G. and Beekmann, K., A Selective CMP Process for Stacked Low-k CVD Oxide Films, Microelectronic Engineering, 50(1), 53-58 (2000).
18.蔡明蒔,化學機械研磨後清洗技術簡介,毫微米通訊,6(1) (1999)。
19.林義雄,研磨液組成及機械變數對鋁-化學機械拋光法中電化學性質影響之研究,碩士論文,國立成功大學 (1997)。
20.Grover, G. S., Liang, H., Ganeshkumar, S. and Fortino, W., Effect of Slurry Viscosity Modification on Oxide and Tungsten CMP. Wear, 214(1), 10-13 (1998).
21.盧文章,淺談半導體產業節約用水,節約用水季刊,32,九月(1998)。
22.詹耀富,以柱槽溶氣浮選法回收二氧化矽奈米微粒之研究,碩士論文,國立成功大學(2000)。
23.Browne, S., Maze, J. and Heid, B., Assessing a System for CMP Waste Minimization and Water Recycling. MICRO, 17(3), 77-82 (2000).
24.Corlett, G., Targeting Water Use for Chemical Mechanical Polishing. Solid State Technology, 43(6), 201-206 (2000).
25.Carpio, R., Farkas, J. and Jairath, R., Initial Study on Copper CMP Slurry Chemistries. Thin Solid Films, 266(2), 238-244 (1995).
26.Wang, Y. L., Wang, T. C., Wu, J., Tseng, W. T. and Lin, C. F., A Modified Multi-Chemical Spray Cleaning Process for Post Shallow Trench Isolation Chemical Mechanical Polishing Cleaning Application. Thin Solid Films, 332(1), 385-390 (1998).
27.吳世全、楊偉智,科學園區半導體產業廢水處理方法簡介,工安環保報導,20期(2004)。
28.Lin, S. H. and Yang, C. R., Chemical and Physical Treatments of Chemical Mechanical Polishing Wastewater From Semiconductor Fabrication. Journal of Hazardous Materials, 108(1), 103-109 (2004).
29.劉訓瑜、甘其銓、邱顯盛、黃志彬,化學機械研磨廢水混擬沈澱效能之評估,第二十五屆廢水處理研討會論文集,661-666 (2000)。
30.Huang, C., Jiang W., and Chen C., "Nano Silica Removal from IC Wastewater by Pre-coagulation and Microfiltration Process" Water Science and Technology 50(12), 133-141 (2004).
31.涂佳薇,半導體化學機械研磨(CMP)廢液之資源化處理研究,碩士論文,國立成功大學資源工程研究所(2001)。
32.連介宇,半導體工廠化學機械研磨廢水以浮除程序處理之研究,碩士論文,國立台灣科技大學化學工程系(2000)。
33.詹耀富,以柱槽溶氣浮選法回收二氧化矽奈米微粒之研究,碩士論文,國立成功大學資源工程研究所(2000)。
34.林志朋、雷大同、溫紹炳、涂佳薇、詹耀富,柱槽溶氧加壓浮選處理半導體化學機械研磨(CMP)廢液之研究,第二十四屆廢水研討會論文集,851-856(1999)。
35.楊金鐘、楊叢印,利用電過濾/電透析同步處理及回收晶圓廠化學機械研磨廢水,環保月刊,14,66-75(2002)。
36.Browne, S., Krygier, V., O’Sullivan, J., Sandstrom, E. L. Treating Wastewater from CMP Using Ultrafiltration. MICRO, 17(3), 78-86 (1999).
37.James, D., Campbell, D., Francis, J., Nguyen, T. and Brady, D., A Process for Efficient Treatment of Cu CMP Wastewater. Semiconductor International online, (http://www.semiconductor.net/semiconductor/), May (2000).
38.Pan, J. R., Huang, C., Jiang, W., Chen, C., Treatment of wastewater containing nano-scale silica particles by dead-end microfiltration: evaluation of pretreatment methods. Desalination, 179(1), 31-40 (2005).
39.Yang, Gordon C.C., Yang, T. Y. and Tsai, S. H., A Preliminary Study on Electrically Enhanced Crossflow Microfiltration of CMP Wastewater. Proc. Asian Waterqual 2001 IWA Asia-Pacific Regional Conference, September 12-15, Fukuoka, Japan, 919-924 (2001).
40.Yang, Gordon C.C. and Yang, T. Y., Reclamation of High Quality Water from Treating CMP Wastewater by a Novel Crossflow Electrofiltration/Electrodialysis Process. Journal of Membrane Science, 233(11), 151-159 (2004).
41.Yang, Gordon C. C., Yang, T. Y. and Tsai, S. H., Crossflow Electro-microfiltration of Oxide-CMP Wastewater. Water Research, 37(4), 785-792 (2003).
42.蔡秀惠,利用外加電場掃流微過濾程序處理化學機械研磨廢水,碩士論文,國立中山大學環境工程研究所(2001)。
43.熊紀中,以電場掃流過濾分離CMP廢水之研究,碩士論文,中原大學化學工程研究所(2003)。
44.Hu, C.Y., Lo, S. L., Li, C. M. and Kuan, W. H., Treating Chemical Mechanical Polishing (CMP) Wastewater by Electro-coagulation-flotation Process with Surfactant. Journal of Hazardous Materials, 120(1), 15-20 (2005).
45.范文彬,利用電聚浮除法處理半導體業CMP廢水之研究,碩士論文,淡江大學水資源及環境工程學系(2001)。
46.Lai, C. L. and Lin, S. H., Treatment of Chemical Mechanical Polishing Wastewater by Electrocoagulation: System Performances and Sludge Settling Characteristics. Chemosphere, 54(3), 235-242 (2004).
47.Lai, C. L. and Lin, S. H., Electrocoagulation of Chemical Mechanical Polishing (CMP) Wastewater from Semiconductor Fabrication. Chemical Engineering Journal, 95(1), 205-211 (2003).
48.Belongia, B. M., Haworth, P. D., Baygents, J. C. and Raghavan, S., Treatment of Alumina and Silica Chemical Mechanical Polishing Waste by Electrodecantation and Electrocoagulation. Journal of the Electrochemical Society, 146(11), 4124-4130 (1999).
49.Raghavan, S., Sun, Y. and Baygents, J. C., Treatment Strategies for Wastes from CMP Operations. Proc. International Conference on Wafer Rinsing, Water Reclamation and Environmental Technology for Semiconductor Manufacturing, 1-18, Hsinchu, Taiwan (1999).
50.Krulik, G. A., Kramasz, K., Golden, J. H., Small, R. J., Shang, C. and Ragan, L., Copper CMP Wastewater Chemistry and Treatment. Ultrapure Water, 18(10), 29-35 (2001).
51.Golden, J. H., Small, R., Pagan, L., Shang, C. and Raghavan, S., Evaluating and Treating CMP Wastewater. Semiconductor International Online, 23(6), 92-103 (2000).
52.Gyliene, O., Salkauskas, M. and Vilcinskaite, N., Coprecipitation of Cu(II) and Ni(II) Complexes with Fe(OH)3. Plating and surface finishing, 83(11), 70-74 (1996).
53.Lutful, I. K. and Alam, M. S., Heavy Metal Removal from Soil by Coupled Electric-hydraulic Gradient. Journal of Environmental Engineering, 120(6), 1524-1543 (1994).
54.龐熙華,利用電聚浮除法處理廢水中Cu-EDTA之研究,碩士論文,淡江大學水資源與環境工程學系(2001)。
55.Naumczyk, J., Szpyrkowicz, L. and Grandi, F. Z., Electro-Chemical Treatment of Textile Wastewater. Water Science and Technology, 34(11), 17-24 (1996).
56.Lin, S. M. and Yang, H. M., Treatment of Photographic Effluents by Electrochemical Method. Environmental Engineer Science, 14(4), 201-206 (1997).
57.Vlyssides, A. G., Israilide, C. J., Loizidou, M., Karvouni G. and Mourafeti V., Electrochemical Treatment of Vinasse from Beet Molasses. Water Science and Technology, 36(2-3), 271-278 (1997).
58.Lin, S. H., Shyu, C. T. and Sun, M. C., Saline Wastewater Treatment by Electrochemical Method. Water Research, 32(4), 1059-1066 (1998).
59.Vlyssides, A. G. and Israilides C. J., Electrochemical Oxidation of a Textile Dye and Finishing Wastewater Using a Pt/Ti Electrode. Jornal of Environmental Scinice and Health, 33(5), 847-862 (1998).
60.Naumczyk, J., Szpyrkowicz L. and Grandi F. Z., Electro-Chemical Treatment of Textile Wastewater. Water Science and Technology, 34(11), 17-24 (1996).
61.Kongsricharoern, N. and Polprasert C., Electrochemical Precipitation of Chromium(Cr6+) from an Electroplating Wastewater. Water Science and Technology, 31(9), 109-117 (1995).
62.Widner, R. C., Lanza M. R. V. and Sousa M. F. B., Electrolytic Removal of Metals from Industrial Wastewater. Plating and surface finishing, 84(10), 59-62 (1997).
63.Christiane A. R. R., Rosana A. D. I., Waldir B. and Rodnei B., Recycled Niobium Felt as an Efficient Three-dimensional Electrode for Electrolytic Metal Ion Removal. Water Research, 34(13), 3269-3276 (2000).
64.Kusakabe, K., Nishida, H., Morooka, S. and Kato, Y., Simultaneous Electrochemical Removal of Copper and Chemical Oxygen Demand Using a Pack-bed Electrode Cell. Journal of Applied Electrochemistry, 16, 121-126 (1986).
65.Juang, R. S. and Wang, S. W., Electrolytic Recovery of Binary metals and EDTA from Strong Complexed Solutions. Water Research, 34(12), 3179-3185 (2000).
66.Polcaro, A. M. and Palmas, S., Electrochemical oxidation of Chloro-phenols. Industrial and Engineering Chemistry Reserch, 36, 1791-1798 (1997).
67.Ribordy, P., Pulgarin C., Kiwi, J. and Peringer P., Electrochemical Versus Photochemical Pretreatment of Industrial Wastewaters. Water Science and Technology, 35(4), 293-302 (1997).
68.Leu, H. G., Lin, S. H. and Lin, T. M., Enhanced Electro-chemical Oxidation of Anionic Surfactants. Jornal of Environmental Scinice and Health, A33(4), 681-699 (1998).
69.Abuzaid, N. S., Bukhari, A. A. and Al-Hamouz, Z. M., Removal of Bentonite Causing Turbidity by Electrocoagulation. Jornal of Environmental Scinice and Health, A33(7), 1341-1358 (1998).
70.Mameri, N., Yeddou, A. R., Lounici, H., Belhocine D., Grib, H. and Bariou, B., Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process Using Bipolar Aluminium Electrodes. Water Research, 32(5), 1604-1612 (1998).
71.Matteson, M. J., Dobson R. L., Glenn, R. W., Kukunoor, Jr, N. S., Waits, W. H. Ⅲand Clayfield, E. J., Electrocoagulation and Separation of Aqueous Suspensions of Ultrafine Particles. Colloids and Surfaces, 104(1), 101-109 (1995).
72.Gregory, J., Solid-liquid Separation. Ellis Horwood, Chichester, New York, 29-40 (1984).
73.Balmer, L. M. and Foulds, A. W., Electroflocuulation /Electroflotation for the Removal of Oil from Oil-in-Water Emulsions. Filtration and Separation, 23, 366-370 (1986).
74.Gyliene, O., Salkauskas, M. and Vilcinskaite, N., Coprecipitation of Cu(II) and Ni(II) Complexes with Fe(OH)3. Plating and Surface Finishing, 83(11), 70-74 (1996).
75.Kongsricharoern, N. and Polprasert, C., Chromium Removal by a Bipolar Electro-chemical Precipitation Process. Water Science and Technology, 34(9), 109-116 (1996).
76.王文義,利用電聚浮除法處理工業綜合廢水之研究,碩士論文,逢甲大學土木及水利工程研究所(2001)。
77.Ramirez, E. R., Comarative Physicohmical Study of Industrial Wastewater Treatment by Electrolytic Dispersed Air and Dissolved Air Flotation Technilogies. Waste Conference, Purdue University, Proc. 34, 699-709 (1979).
78.Scott, K., Metal Recovery Using a Moving-bed Electrode. Journal of Applied Electrochemistry, 11(3), 339-346 (1981).
79.葉日紳,電化學凝聚法去除銅與乙二胺四乙酸錯和物之研究,碩士論文,國立清華大學(1992)。
80.Malley, J. P. Jr. and Edzwald, J. K., Laboratory Comparison of DAF with Conventional Treatment. Journal of the American Water Works Association, 83(9), 56-61 (1991).
81.Edzwald, J. K., Walsh, J. P., Kaminski G. S. and Dunn, H. J., Flocculation and Air Requirements for Dissolved Air Flotation. Journal of the American Water Works Association, 84(3), 92-100 (1992).
82.Edzwald, J. K., Principles and Applications of Dissolved Air Flotation. Water Science and Technology, 31(3), 1-23 (1995).
83.Bunker Jr, D. Q., Edzwald, J. K., Dahlquist, J. and Gillberg, L., Pretreatment Considerations for Dissolved Air Flotation: Water Type, Coagulants and Flocculation. Water Science and Technology, 31(4), 63-71 (1995).
84.Hall, T., Pressdee, J., Gregory, R. and Murray, K., Cryptosporidium Removal During Water Treatment Using Dissolved Air Flotation. Water Science and Technology, 31(3), 125-135 (1995).
85.Vik, E. L., Carlson, D. A., Ekum, A. S. and Gjessing, E. T., Electro-coagulation of Potable Water. Water Research, 18(11), 1355-1360 (1984).
86.Lin, S. H. and Wu, C. L., Electrochemical Removal of Nitrite and Ammonia for Aquaculture. Water Research, 30(3), 715-721 (1996).
87.Lin, S. H. and Peng, C. F., Continuous Treatment of Textile Wastewater by Combined Coagulation, Electrochemical Oxidation and Activated Sludge. Water Research, 30(3), 587-592 (1996).
88.Lin, S. H. and Chen, M. L., Treatment of Textile Wastewater by Chemical Methods for Reuse. Water Research, 31(4), 868-876 (1997).
89.Ramirez, E. R., Physicochemical Treatment of Rendering Wastewater by Electrocoagulation. The 36th Purdue Ind. Waste Conf., Lafayette, Indiana (1981).
90.Lin, S. H., Shyu, C. T., Sun, M. C., Saline Wastewater Treatment by Electrochemical Method. Water Research, 32(4), 1059-1066 (1998).
91.Tsai, C. T., Lin, S. T., Shue, Y. C. and Su, P. L., Electrolysis of Soluble Organic Matter in Leachate from Landfills. Water Research, 31(12), 3073-3081 (1997).
92.Lin, S. H. and Chang, C. C., Treatment of Landfill Leachate by Combined Electro-Fenton Oxidation and Sequencing Batch Reactor Method. Water Research, 34, 4243-4249 (2000).
93.Biwyk, A., Electrocoagulation of Biolofically Treated Sewage. The 35th Purdue Ind. Waste Conf., Lafayette, Indiana (1980).
94.Pouet, M. F. and Grasmick, A., Urban Wastewater Treatment by Electro- coagulation and Flotation. Water Science and Technoogy, 31(3-4), 275-283 (1995).
95.Abuzaid, N. S., Bukhari, A. A. and Al-Hamouz, Z. M., Removal of Bentonite Causing Turbidity by Electrocoagulation. Jornal of Environmental Science and Health, A33(7), 1341-1358 (1998).
96.Chen, G. H., Chen, X. M. and Yue, P. L., Electrocoagulation of Electroflotation of Restaurant Wastewater. Jornal of Environmental Engeering, ASCE, 126, 858-863 (2000).
97.Ogutveren, U. B. and Koparal, S., Electrocoagulation for Oil-water Emulsion Treatment. Jornal of Environmental Science and Health, A32(9-10), 2507-2520 (1997).
98.Ciorba, G. A., Radovan, C., Vlaicu, I. and Pitulice, L., Correlation between Organic Component and Electrode Material: Consequences on Removal of Surfactants from Wastewater. Electrochemica Acta, 46, 297-303 (2000).
99.Awad, Y. M. and Abuzaid, N. S., The Influence of Residence Time on the Anodic Oxidation of Phenol. Separation and Purification Technology, 18(3), 227-236 (2000).
100.Kumar, P. R., Chaudhari, S., Khilar, K, C. and Mahajan, S. P., Removal of Arsenic from Water by Electrocoagulation. Chemosphere, 55(13), 1245-1252 (2004).
101Den, W. and Huang, C., Electrocoagulation for Removal of Silica Nano-Particles from Chemical-Mechanical-Planarization Wastewater. Colloids and Surfaces A 254(1-3), 81-89 (2005).
102李俊德,以電解膠凝法處理養豬廢水之研究,碩士論文,成功大學環境工程學系(1993)。
103柯建成,電聚膠凝法處理染整廢水之研究,碩士論文,成功大學環境工程學系(1998)。
104張子蕙,利用電聚浮除法處理生活污水能力之探討,碩士論文,淡江大學水資源及環境工程學系(1998)。
105張志隆,電浮除法處理含油廢水之研究,碩士論文,台灣大學化學工程學研究所(1999)。
106張志銘,電聚浮除配合逆滲透法處理石化廢水之研究,碩士論文,淡江大學水資源及環境工程學系(2000)。
107黃順興,電聚浮除法處理氯苯之探討,碩士論文,淡江大學水資源及環境工程學系(1999)。
108李啟旻,添加界面活性劑於電聚浮除法處理化學機械研磨廢水之研究,碩士論文,台灣大學環境工程學研究所(2002)。
109田福助、吳溪煌,電化學理論與應用,高立圖書,台北(1997)。
110Polyanin, A. D., Kutepov, A. M., Vyazmin, A. V., and Kazenin, D. A., Mass and Transfer in Chemcal Engineening, Taylor & Francis, London (2002).
111李建武,生物化學實驗原理和方法,藝軒圖書,台北(1999)。
112Keh, H. J. and Hsu, W. T., Diffusioosmosis of Electrolyte Solutions in Fine Capollaries. Colloids Surfaces, A233(1), 87-95 (2004).
113.Reynolds, T. D. and Richards, P. A., Unit Operations and Processes in Environmental Engineering. 2rd ed. PWS Publishing Co., Boston, Massachusetts (1996).
114.Dick, R. I. and Young, K. W., Analysis of Thickening Performance of Final Settling Tank. Proc. the 27th Purdue Ind. Waste Conf., Lafayette, Indiana (1972).
115.Coe, H. S. and Clevenger, G. H., Methods of Determining the Capacities of Slime Settling Tanks. Transations of the Amarican Institute of Mining and Metallurgical Engngeeres 55(1), 356-384 (1916).
116.Richardson, J. F. and Zaki, W. N., Sedimentation and Fluidization I. Transations of the Instution of Chemical Engneers, 32(7), 35-53 (1954).
117.Vesilind, P. A., Design of Prototype Thickeners from Batch Settling Tests. Water Sewge Works, 115(7), 302-307 (1968).
118.Yoshioka, N., Hotta, Y., Tanaka, S., Naito, S. and Tsugami, S., Continuous Thickening of Homogeneous Flocculated Slurries. Kagaku Kogaku 21(3), 66-75 (1957).
119.Thomas, D. G., Transport Characteristics of Suspensions. Relation of Hindered Settling Floc Characteristics to Rheological Parameters. AIChE J., 9(1), 310-316 (1963).
120.Cho, S.H., Colin, F., Sardin, M., Prost, C., Settling Velocity Model of Activated Sludge. Water Research, 27(7), 1237-1242 (1993).
121.Bird, R. B., Stewart, W. E. and Lightfoot, E. N., Transport Phenomena. Wiley, New York (1960).
122.McCabe, W. L. and Smith, J. C., Unit Operations of Chemical Engineering, 3rd edition, McGraw-Hill, New York, 149 (1980).
123.Vanderhasselt, A. and Vanrolleghem, P. A., Estimation of Sludge Sedimen- tation Parameters from Single Batch Settling Curves. Water Research 30, 395-406 (2000).
124.Takacs, I., Patry, G. and Nolasco, D., A Dynamic Model of The Clarification-thickening Process. Water Research, 25(10), 1263-1271 (1991).
125.Scott, K. J., Mathematical Models of Mechanism of Thickening. Industrial & Engineering Chemistry Fundamentals, 5(1), 109-113 (1966).
126.Scott, K. J., Theory of Thickening, Factors Affecting Settling Rate of Solids in Flocculated Pulps. Transactions of the Institution Mining and Metetallurgy, 77(C), 85-97 (1968).
127Katz, W. J. and Mason, D. G., Freezing Methods Used to Condition Activated Sludge. Water & Sewage Works, 117(4), 110-114 (1970).
128Lee, D. J. and Hsu, Y. H., Fast Freeze/thaw Treatment on Waste Activated Sludge: Floc Structure and Sludge Dewaterability. Envirnment Science and Technoogy, 28(8), 1444-1449 (1994).
129Vesilind, P. A., Wallinmaa, S. and Martel, C. J., Freeze-thaw Sludge Conditioning and Double Layer Compression. Canandian Jornal of Civil Engineering, 18(6), 1078-1083 (1991).
130Vesilind, P. A., Hung, W. and Martel, C. J., Agitation and Filterability of Freeze/thawed Sludge. Jornal of Cold Region Engineering, 5(2), 77-84 (1991).
131Doe, P. W., Benn, D., and Bays, L. R., The Disposal of Washwater Sludge by Freezing. Jornal of Institution Eastern Engneering, 19(4), 251-275 (1965).
132Martel, C. J., Affleck, R. and Yushak, M., Operational Parameters for Mechanical Freezing of Alum Sludge. Water Research, 32(9), 2646-2654 (1998).
133Randall, C. W., Khan, M. Z. and Stephens, N. T., Waste Activated Sludge Conditioning by Direct Slurry Freezing. Water Research, 9(4), 917-925 (1975).
134Ralldall, C. W., Butane is Nearly "Ideal" for Direct Slurry Freezing. Water and Waste Engineering, 15(3), 43-49 (1978).
135Knocke, W. R. and Trahem, P., Freeze-thaw Conditioning of Chemical and Biological Sludges. Water Research, 23(1), 35-42 (1989).
136Vol''khin, V. V. and Ponomarev, E. I., Effect of Freezing on the Properties of Coagulated Metal Hydroxides: Mechanism of the Process. Colloid Jornal (USSR), 27(1), 10-13 (1965).
137Martel, C. J., Dewaterability of Freeze-thaw Conditioned Sludges. Reserch Jornal of Water Pollution Control, 61(2), 237-241 (1989).
138Martel, C. J., Development of Design for Sludge Freezing Beds. Environmental Engineering Science, 115, 799-806 (1989).
139Bolling, G. F. and Cisse, J., A Theory for the Interaction of Particles with a Solidfying Front. Jornal of Crystal Growth, 10(4), 56-66 (1971).
140Logsdon, G. S. and Edgerley, Jr. E., Sludge Dewatering by Freezing. Jornal of American Water Works Association, 63(11), 734-740 (1971).
141Halde, R., Concentration of Impurities by Proressive Freezing. Water Research, 14(6), 575-581 (1980).
142Vesilind, P. A. and Martel, C. J., The Freezing of Water and Wastewater Sludges. Journal of Environmental Engineering, 116(5), 854-862 (1990).
143Silvares, O. M., Cravalho, E. G., Toscano, W. M. and Huggins, C. E., The Thermodynamics of Water Transport from Biological Cells during Freezing. Jornal of Heat Transfer, 97(4), 582-588 (1975).
144Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J., Continuous Moisture Distribution in Waste Activated Sludge. Journal of Environmental Engineering ASCE, 123(3), 253-258 (1997).
145Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J., Regimes of Zone Settling of Waste Activated Sludges. Water Research, 30(8), 1844-1850 (1996).
146Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J., Effects of Freeze/thaw Treatment on Zone Settling of Waste Activated Sludges. Jornal of Environmental Scinice and Health A., 31(1), 521-527 (1996).
147Chen, G. W., Chang, I. L., Hung, W. T. and Lee, D. J., Continuous Moisture Classification in Waste Activated Sludge. Journal of Environmental Engineering, 123(3), 253-258 (1997).
148Chen, G. W., Lin, W. W. and Lee, D. J., Use of Capillary Suction Time as a Measure of Sludge Dewaterability. Water Science and Technology, 34(4), 443-448 (1996).
149Lee, D. J., Jean, D. S. and Wu, J. C. S., Separation of Oil from Oily Sludge by Freezing and Thawing. Water Research, 33(7), 1756-1759 (1999).
150呂適任,適於超音波藥物傳輸系統使用之微脂粒的製備與驗證,碩士論文,臺灣大學電機工程學研究所(2002)。
151王明光、王敏昭,實用儀器分析,合記圖書出版社,台北(1993)。
152李育嘉,漫談布朗運動,數學傳播,9(3),22-28 (2000)。
153Nilson, E., Dynamical Theories of Brownian Motion, Princeton Unversity Press (1967).
154Talmage, W. P. and Fitch, E. B., Determining Thickener Unit Area. Industrial and Engineering Chemistry, 47(1), 38-44 (1955).
155Nguyen, V. H., Daamen, R. and Hoofman, R., Impact of Different Slurry and Polishing Pad Choices on the Planarization Efficiency of a Copper CMP Process. Microelectronic Engineering, 76(1-4), 95-99 (2004).
156Ormeci, B. and Vesilind, P.A., Effect of Dissolved Organic Material and Cations on Freeze-thaw Conditioning of Activated and Alum Sludges. Water Research, 35(18), 4299-4306 (2001).
157Rajakovic, V., Skala, D., Separation of water-in-oil emulsions by freeze/thaw method and microwave radiation. Separation and Purification Technology, 49(2), 192-196 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔