(3.232.129.123) 您好!臺灣時間:2021/03/06 02:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張維凱
研究生(外文):Wei-kai Chang
論文名稱:PBI薄膜及PBI-PTFE複合膜之製備及在燃料電池之應用
論文名稱(外文):Preparations of PBI Membranes and PBI-PTFE composite membranes and their applications to fuel cells
指導教授:林秀麗林秀麗引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:85
中文關鍵詞:PBIPBI薄膜
外文關鍵詞:PBIPBI membraneFuel cells
相關次數:
  • 被引用被引用:3
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的是將PBI以不同的LiCl比例溶於DMAc,以刮刀方式成膜,並將PBI和PTFE複合,以製備厚度更薄的PBI-PTFE複合膜,使PBI及PBI-PTFE膜材可應用於燃料電池。我們利用FTIR來鑑定合成出的PBI。以SEM (Scanning Electron Microscope)來觀察膜材表面結構,交流阻儀(AC impedance)測定膜材導電度,TGA (thermogravimetric analysis)測定膜材熱穩定性,氣相層析儀(GC)測定甲醇滲透率,並將Nafion117、不同LiCl比例所製備的PBI膜、不同方法製備的PBI-PTFE製作成膜電極組(MEA),以單電池測試系統測試MEA在70℃、120℃、150℃、180℃質子交換膜燃料電池(PEMFC)的單電池效能,及在操作溫度為90℃時甲醇燃料電池(DMFC)的單電池效能。
PBI-PTFE在操作溫度70℃,氫氧氣進料為200 ml/min(PEMFC)下的效能比Nafion117高出許多,當溫度提升至100℃以上時,效能因為觸媒漿料配方及加入複合膜中的偶合劑使得效能大幅下降。PBI(PP-9.0)在操作溫度90℃,厚度80 μm,甲醇進料2M,氧氣進料為150 ml/min(DMFC)下的最大功率為50.4 mW/cm2較Nafion117在不同進料甲醇濃度(1M、2M、3M)高。
In this thesis PBI membranes (thickness 60~200 μm) were prepared by casting from LiCl / DMAc solutions, and PBI-PTFE composite membranes (20~36 μm thickness) were prepare by impregnating porous PTFE (poly tetrafluoroethylene) in PBI / LiCl / DMAc solutions. Both of these two membranes were than impregnating with phosphoric acid solution and were used to prepare membrane electrolyte assembly (MEA). Though PTFE has a lower conductivity than PBI, however, the high mechanical strength of PTFE allow the PBI-PTFE composite membranes to have a lower thickness when they were used in full cells applications. The lower thickness (20~36 μm) of PBI-PTFE composite membranes caused than to have lower resistance than PBI (60~200 μm) membranes. In this study, we showed that PBI-PTFE composite membranes had better PEMFC performance than Nafion117 and PBI at 70℃, and also PBI-PTFE composite membrane had better PEMFC performance than PBI at 180℃.
第一章 序論...............................................................................................1
1.1 前言……………..................................................................................1
1.2 燃料電池簡介…..................................................................................3
1.3 質子交換膜簡介..................................................................................4
1.4 聚苯咪唑(Polybenzimidazole,PBI)的合成及其在燃料電池之應用…………………………………………………………………….6
1.4.1 PBI的合成.………..………………………......................................7
1.4.2 PBI在燃料電池上的應用………………………………….……....8
1.5 PBI薄膜的製備………………..……………………………………..8
1.5.1 PBI改質薄膜性能……………………………….............................9
1.5.1.1 磺酸化PBI改質膜(PBI-AS)………...……………………….....10
1.5.1.2 PBI與磺酸化高分子摻合膜………………………………...….11
1.6 聚四氟乙烯(PTFE)簡介…………………………………………...12
1.6.1 PTFE於燃料電池上的應用……………………………………....12
1.6.2 PBI-PTFE複合膜…………………………………………………14
1.7 高溫質子交換膜燃料電池(PEMFC)………………………………14
1.7.1 PBI於高溫質子交換膜燃料電池的應用………………………...15
1.8 研究目的……………………………………………………………17

第二章 實驗.............................................................................................18
2.1 實驗藥品……………………………………………………………18
2.2 儀器設備............................................................................................19
2.3 實驗步驟............................................................................................20
2.3.1 PBI合成……………………………………………………….......20
2.3.2 霍式紅外光譜儀(FTIR)結構鑑定..................................................21
2.3.3 固有黏度測定.................................................................................21
2.3.4 PBI薄膜製備……...........................................................................21
2.3.5 PBI-PTFE複合膜製備……………………………………………22
2.3.5.1 方法Ⅰ- PBI-PTFE (Ⅰ)………………………………………...22
2.3.5.2 方法Ⅱ- PBI-PTFE (Ⅱ)…………………………………….......22
2.4 MEA製備………………….. ………………………………………23
2.4.1 低溫漿料配方…………………………………………………….23
2.4.2 高溫漿料配方(PEMFC) …………………………………………24
2.5 PBI薄膜及PBI-PTFE複合膜性質測試…………………………….25
2.5.1 SEM觀察薄膜表面形態………………………………………….25
2.5.2 導電度測量……………………………………………………….25
2.5.3 TGA熱穩定性分析……………………………………………….27
2.5.4 稱重測試………………………………………………………….27
2.5.5 氣體滲透量測…………………………………………………….27
2.5.6 甲醇滲透率的量測……………………………………………….29
2.5.7 質子交換膜燃料電池(PEMFC)低溫性能測試………………….30
2.5.8 直接甲醇燃料電池(DMFC)性能測試…………………………...30
2.5.9 質子交換膜燃料電池(PEMFC)高溫性能測試………………….31
2.5.10 低溫(< 100℃)燃料電池(PEMFC及DMFC)組裝及薄膜活化程序………………………………………………………………………….32
2.5.11 高溫(> 100℃)燃料電池(PEMFC)組裝及薄膜活化程序……...33
2.6 交流阻抗法(AC impedance).............................................................34
2.6.1 AC impedance的技術應用……………………………………….34
2.6.2 交流阻抗操作原理.........................................................................34
2.6.3 等效電路元件.................................................................................37
2.6.4 交流阻抗圖譜分析.........................................................................40

第三章 結果與討論.................................................................................42
3.1 霍式紅外光譜儀(FTIR)結構鑑定分析............................................42
3.1.2 固有黏度(inherent viscosity)測定......................... ........................43
3.2 SEM觀察膜材表面............................................................................45
3.2.1 PBI膜……………...........................................................................45
3.2.2 PTFE膜經偶合劑處理………………............................................45
3.2.3 PBI-PTFE複合膜…………………………………………………45
3.3 導電度測試………………………..………………………………..57
3.4 熱重分析儀(TGA)測試...….....…………………………………….58
3.5 PBI-PTFE秤重測試…..………………………………….…………59
3.6 氣體滲透測試....................................................................................60
3.7 甲醇滲透測試......................... .................... .....................................60
3.8 燃料電池測試……………………………………………................61
3.8.1 低溫質子交換膜燃料電池(PEMFC)...…………………………..62
3.8.2 高溫質子交換膜燃料電池(PEMFC) ....................... ....................65
3.8.3 直接甲醇進料燃料電池(DMFC) ......................... ........................68
3.8.3.1 甲醇濃度1M......................... ..................... ................................68
3.8.3.2 甲醇濃度2M......................... ..................... ................................70
3.8.3.3 甲醇濃度3M....................... ..................... ..................................72

第四章 結論…………………………………………………………….75
4.1 PBI薄膜製備………………………………………………………..75
4.2 PBI-PTFE 薄膜製備……………………………………………….76

第五章 未來工作及建儀……………………………………...……..78
5.1 PBI薄膜製備方式改進…………………………………….……78
5.2 PBI-PTFE複合膜製備方式改進…………………………….….78
5.3 高溫觸媒配方改進……………………………………………...79

第六章 參考文獻………..…………………………………………...80
1.Asensio J. A., Borr?s S., Pedro G. R., “Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles”, Journal of Polymer Science: Part A: Polymer Chemistry, 40, 3703-3710 (2002)
2.Bae J,-M., ” Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fule cells”, solid state ionics, 147, 189-194 (2002)
3.Bamdad B., Alex R. H., Robert S. M., “Electrode apparatus containing an integral composite membrane”, US Patent RE37656 E, Apr. 16 (2002)
4.Brinker K. C. Robinson I. M., “Polybenzimidazoles”, U.S. Pat. 2895948 (1959)
5.Bouchet R., Siebert E., ” Proton conduction in acid doped polybenzimidazole” Solid State Ionics, 118, 287–299 (1999)
6.Camaioni N., Casalbore-Miceli G., Martelli A., “A novel solid state battery based on a polymer proton conductor: Poly(propargyl alcohol) doped with perchloric acid”, Journal of Applied Electrochemistry, 27, 862-866 (1997)
7.Choe E. W., Choe D. D., in polymeric Materials Encyclopedia, Vol 7, Salamone J. C., Editor, 5619, CRC Press, Boca Raton, FL (1996)
8.Dudgeon C. D. Vogl O., “Bisorthoesters as polymer intermediates, II. A facile method for the preparation of polybenzimidazoles”, J. Polym. Sci. Polym. Chem. Ed., 16, 1831-1852 (1978)
9.Glipa Xavier, ”synthesis and characterisation of sulfonated polybenizimidazole; a highly conducting proton exchange polymer”Solid State ionics, 97, 323-331 (1997)
10.Hedberg F. L. Marvel C. S., “New single-step process for polybenzimidazole synthesis”, J. Polym. Sci. Polym., Chem. Ed., 12, 1823-1828 (1974)
11.Iwakura Y., Uno K., Imai Y., “Polybenylenebenzimidazoles” J. Polym. Sci. A, 2, 2605-2615 (1964-A)
12.Iwakura Y., Uno K., Imai Y., “Polybenzimidazoles. II. polyalkylenebenzimidazoles”, Makromol. Chem., 77, 33-40 (1964-B)
13.Jorissen L., Gogel V., Kerresl J., Garche J., “New membranes for direct methanol fuel cells” Journal of Power Sources, 105, 267-273 (2002)
14.Joongpy S., Heung Y. H., Seong-Ahn H., “Charateristics of the
Nafion Ionomer-impregnated composite membrane for polymer electrolyte fuel cells”, Journal of power source, 109, 412-417 (2002)
15.Li Qingfeng, Hans A. Hjuler, Niels J. Bjerrum, “Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolyte” Electrochimica Acta, 45, 4219-4226 (2000)
16.Li Qingfeng, Hans A. Hjuler, Niels J. Bjerrum, ”Phosphoricacid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications” Jounal of Applied Electrochemistry, 31, 773-779 (2001)
17.Li Qingfeng, He Ronghuan, Gao Ji-An, Jensen Jens Oluf, Bjerrum Niels. J. “The CO poisoning effect in PEMFCs operational at temperature up to 200°C” Journal of The Electrochemical Society, 150, A1599-A1605 (2003)



18.Li Qingfeng, He Ronghuan, Berg Rolf W., Hans A. Hjuler, Niels J. Bjerrum, “Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells” Solid State Ionics, 168, 177–185 (2004)
19.Liu F., Yi B., Xing D., Yu J., Zhang H., ”Nafion/PTFE composite membranes for fuel cell applications”, Journal of Membrane Science, 212, 213-223 (2003)
20.MacDonald J. R., Impedance spectroscopy emphasizing solid materials and systems, New York (1987)
21.Mahlon S. Wilson, Shimshon Gottesfeld, J. Electrochem. Soc., 139 (1992)
22.Ma Y.L.,Wainright J. S. , Litt M. H., Savinell R. F., “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells” J. Electrochem. Soc., 151, A8 (2004)
23.Musto P., Karasz F. E., MacKnight W. J., “Hydrogen Bonding in Polybenzimidazole/ Poly(ether imide) ” Macromolecules, 24, 4762-4769 (1991)
24.Palanichamy Krishnan, Jin-Soo Park, Chan-Soo kim, “Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide” Journal of Power Sources (2006)
25.Pu Hongting, ”Methanol permeation and proton conductivity of acid-doped poly(N-ethylbenzimidazole) and poly(N-methylbenzimidazole)” , Journal of Membrane Science, 241 169-175 (2004)


26.Rikukawa M., Sanui K., “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Prog. Polym. Sci., 25, 1463-1502 (2000)
27.Sugama Toshifumi, “Hydrothermal degradation of polybenzimidazole coating” Materials Letters, 58, 1307– 1312 (2004)
28.Seland F., Berning T., Bφrresen B., Tunold R., “Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte” (2006)
29.Ueda M., Sato M., Mochizuki A., “Poly(benzimidazole) synthesis by direct reaction of diacids and tetramine”, Macromolecules, 18, 2723 -2726 (1985)
30.Wainright J. T. S., Wang J. T., Savinell R. F., Litt M. H., “Acid-doped polybenzimidazoles: a new polymer electrolyte” J. Electrochem. Soc., 142, L121 (1995)
31.Wainright Jesse S., Wang Jiang Tao, Savinel Robert F., “Direct Methanol Fuel Cells Using Acid Dopde Polybenzimidazole a Polymer electrolyte”, IEEE (1996)
32.Wang J. T., Savinell R. F., Wainright J., Litt M. H., Yu H., “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte”, Electrochim. Acta, 41, 193-197 (1996-A)
33.Wang J. T., Wainright J. S. , Savinell R. F., Litt M. H., “Direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte”, J. Appl. Electrochem., 26, 751-756 (1996-B)
34.Wee Jung Ho, Lee Kwan Young “Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrae fuel cells”, Journal of Power Sources (2005)

35.Xing B. Savadogo O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)”, Electrochem. Commun., 2, 697-702 (2000-A)
36.Xing B. Savadogo O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on acid-doped polybenzimidazole (PBI)” J. New Mater. Electrochem. Syst., 3, 345 -349 (2000-B)
37.Yamaguchi Takeo, Miyata Fusae, Nakao Shin-ichi, “Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell”, Journal of Membrane Science, 214, 283-292 (2003)
38.田昭武,電化學研究方法,科學出版社 (1984)
39.許照,基本電學,徐氏基金會 (1988)
40.林宗儀,矽氧烷型高分子電解質之製備與物性探討,碩士論文,成功大學 (2000)
41.黃朝榮,元智大學化工系, “燃料電池”,上課講義 (2003)
42.邱志豪,聚苯咪唑合成及薄膜性質,碩士論文,元智大學化工系(2004)
43.蔡宏斌, “氟碳聚合體(1):PTFE”, 科儀新知, 第十四卷第一 期,85-95(1992.8)
44.高振育, “PTFE表面改質之研究與應用,” 博士論文, 中原大學, (1999)
45.林昇佃,余子隆,張幼珍,翁芳柏,李碩仁,林育才,吳和生,魏榮宗,林修正,賴子珍,曾盛恕,詹世弘, “燃料電池:新世紀能源” 滄海書局, (2004)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔