跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林稚閔
研究生(外文):Chih-Min Lin
論文名稱:磺酸化二氮雜萘聯苯聚醚酮與磺酸化聚芳香烴醚醚酮酮膜材之鑑定
論文名稱(外文):Characterization of Sulfonated Poly(phthalazinone ether ketone) and Sulfonated Poly(arylene ether ether ketone ketone) Membrane
指導教授:孫ㄧ明
指導教授(外文):Yi-Ming Sun
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:磺酸化聚電解質質子傳導度滲透係數甲醇燃料電池
外文關鍵詞:SPPEKSPAEEKKdirect methanol fuel cellproton conductivitypermeabilities
相關次數:
  • 被引用被引用:2
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究比較不同磺酸化SPPEK DS0.86 和1.10及SPAEEKK不同含量0.7和0.8的磺酸化4,4’-biphenol,並利用乾式成膜法在玻璃板上。
SPPEK-086、SPPEK-110、SPAEEKK-070及SPAEEKK-080膜材的最初熱裂解溫度均高於230 oC。在熱壓製作MEA,可以耐受相當高的熱壓溫度,膜材的結構不會遭到破壞。膜材質子傳導度,隨著磺酸化程度及溫度的上升而提升。因為質子傳導活化能接近14-40 KJ/mol,所以質子傳導方式均屬Grotthus與vehicle mechanism兩種方式同時進行來傳導。當溫度在80 oC,SPAEEKK-080為3.9×10-2 S/cm接近Nafion-117的質子傳導度。
SPPEK-086及SPAEEKK-070的甲醇水溶液吸收量變化與Nafion-117 相近。高磺酸化程度的膜材SPPEK-110在3 M甲醇水溶液溫度為60 oC時,膜材會產生過度膨潤的現象。滲透蒸發實驗觀察,所有膜材其甲醇阻擋效果均優於Nafion-117。Side-by-side滲透係數實驗,所有膜材的滲透係數也低於Nafion-117。四種膜材中,SPAEEKK-070有最佳的阻擋甲醇的能力。SPAEEKK系列的膜材隨著溫度上升,甲醇滲透係數變化小。所以SPAEEKK系列膜材阻擋甲醇滲透是最佳的膜材。
SPPEK-086、SPPEK-110、SPAEEKK-070及SPAEEKK-080膜材質子傳導度均低於Nafion-117;但阻擋甲醇滲透能力均優於Nafion-117,所以在甲醇燃料電池系中可能可以得到一較好的電池效能,且有較長的電池壽命。
In this study, sulfonated poly(phthalazinone ether ketone) with degree of sulfonation (DS) of 0.86 and 1.10 and sulfonated poly(arylene ether ether ketone ketone) with sulfonated 4,4’-biphenol content (B) of 0.7 and 0.8 were fabricated into membranes on glass plates by solvent casting method.
SPPEKs and SPAEEKKs had excellent thermal stability for use in the preparation of MEA for DMFC because the degradation temperature of them was higher than 230 oC. The proton conductivity of SPPEK and SPAEEKK membranes increased as temperature and the degree of sulfonation. The proton conductivity of SPAEEKK-080 was 3.9×10-2 S/cm which was closed to Nafion-117 at 80 oC. According to the activation energy of proton conductivity was closed to 14-40 KJ/mol, proton transport might follow Grotthus and vehicle mechanisms simultaneously.
SPPEK-086 and SPAEEKK-070 had similar solution uptake to Nafion-117. SPPEK-110 might dissolve in 3 M methanol solution at 60 oC. In pervaporation and side-by-side studies, all the SPPEK and SPAEEKK membranes had lower flux and methanol permeability than Nafion-117.Methanol permeabilities were relatively constant for SPAEEKK membranes when temperature is varied. SPAEEKK-070 membrane had the lowest methanol permeability among all the test membranes. Therefore, SPAEEKKs might be a better choice to prevent methanol crossover at high temperature.
Although the proton conductivity of SPPEK and SPAEEKK membranes were lower than Nafion-117, the methanol permeability of them were much lower than Nafion-117.SPPEK and SPAEEKK membranes still could be considered as a candidate for MEA preparation in direct methanol fuel cell.
目 錄
中文摘要 I
英文摘要……………………………………………………………..II
目錄 III
表目錄 VI
圖目錄 VII

第一章 序論 1
1.1 質子交換膜的研究背景 4
1.2 研究目的與範疇 8

第二章 研究方法與原理 11
2.1 甲醇水溶液吸收量實驗 11
2.2 甲醇於薄膜中的滲透行為 12
2.2.1 滲透係數計算方法 12
2.2.2 滲透活化能 14
2.3 滲透蒸發 15
2.3.1 滲透蒸發原理 16
2.3.2 滲透蒸發理論 17
2.3.3 滲透蒸發定義 18
2.3.3.1 通量(Flux) 19
2.3.3.2 滲透蒸發滲透活化能 19
2.4 Membrane-Electrode Assembly (MEA)介紹 19
2.5 燃料電池的過電壓(Overpotential)介紹 21
2.5.1 活性過電壓之活性極化(Activation polarization) 22
2.5.2 歐姆過電壓之歐姆極化(Ohmic polarization) 23
2.5.3 質傳過電壓之濃度極化(Ooncentration polarization) 23

第三章 實驗方法 26
3.1實驗藥品 26
3.2 實驗設備與器材 26
3.3 元素分析(EA)測試 29
3.3.1 簡介 29
3.3.2 實驗步驟 29
3.4 FTIR-ATR測試 29
3.4.1 簡介 29
3.4.2 實驗步驟 29
3.5 酸鹼滴定實驗 30
3.5.1 簡介 30
3.5.2 實驗步驟 30
3.6 熱重分析(TGA)測試 30
3.6.1 簡介 31
3.6.2 實驗步驟 31
3.7 膜材交流阻抗(AC Impedance)測定 31
3.7.1 簡介 31
3.7.2 實驗步驟 31
3.8 膜材溶液吸收量實驗 34
3.8.1 簡介 34
3.8.2 實驗步驟 34
3.9 GC分析 34
3.10 液相吸附選擇性實驗 34
3.10.1簡介 34
3.10.2 頂空間(Head space)分析 35
3.11 滲透蒸發實驗 35
3.11.1 簡介 35
3.11.2 實驗步驟 35
3.12 Side-by-side滲透實驗 38
3.11.1 簡介 38
3.11.2 實驗步驟 38
3.13 單電池測試 40
3.13.1 簡介 40
3.13.2 實驗步驟 40

第四章 結果與討論 45
4.1 膜材的定性分析 45
4.1.1 薄膜的製備 45
4.1.2 FTIR-ATR分析 45
4.1.3 元素分析與酸鹼滴定實驗 46
4.2 膜材熱穩定分析 46
4.3 膜材質子傳導度分析 47
4.4 膜材溶液吸收量實驗 48
4.5 滲透蒸發與液相吸附選擇性實驗 51
4.6 Side-by-side滲透實驗 53
第五章 結論 84

文獻回顧 85
表 目 錄

表 1.1 各種燃料電池性能比較 3
表 4.1 不同磺酸化程度SPPEK及SPAEEKK之元素分析與離子交換容積(IEC) 55
表 4.2 膜材熱降解溫度 55
表 4.3 膜材質子傳導活化能 55
表 4.4 膜材Nafion-117( 187 ?慆)於不同溫度及不同進料甲醇濃度水溶液,滲透端水和甲醇通量比較表 56
表 4.5 膜材SPPEK-086( 78 ?慆)於不同溫度及不同進料甲醇濃度水溶液,滲透端水和甲醇通量比較表 56
表 4.6 膜材SPPEK-110( 76 ?慆)於不同溫度及不同進料甲醇濃度水溶液,滲透端水和甲醇通量比較表 57
表 4. 7 膜材SPAEEKK-070 (58?慆)於不同溫度及不同進料甲醇濃度水溶液,滲透端水和甲醇通量比較表 57
表 4. 8 膜材SPAEEKK-080 (48?慆)於不同溫度及不同進料甲醇濃度水溶液,滲透端水和甲醇通量比較表 58
表 4.9 膜材甲醇與水之滲透活化能(滲透蒸發) 58
表 4.10 膜材甲醇滲透活化能(side-by-side) 59







圖 目 錄

圖 1.1 甲醇燃料電池工作原理 2
圖 1.2 SPPEK磺酸化步驟 10
圖 1.3 SPAEEKK磺酸化步驟 10
圖 2.1 滲透原理簡示圖 13
圖 2.2 孔洞傳送機制示意圖 16
圖 2.3 溶解-擴散傳送機制示意圖 17
圖 2.4 典型質子交換膜燃料電池電位VS電流密度 25
圖 3.1 (a)夾膜電極cell俯視與側視圖、
(b)離子導電度實驗裝置系統簡圖 33
圖 3.2 滲透蒸發裝置圖 37
圖 3.3 Side-by-side雙槽式擴散槽裝置 39
圖 3.4 DMFC單電池示意圖 43
圖 3.5 甲醇燃料電池測試機台裝置圖 44
圖 4.1 膜材(a) PPEK, (b) SPPEK-086, (c) SPPEK-110, (d) SPAEEKK-070, (e) SPAEEKK-080之ATR-FTIR圖 59
圖4.2 Nafion、PPEK、SPPEK-086、SPPEK-110、SPAEEKK-070與 SPAEEKK-080之TGA圖譜 60
圖4.3 Nafion、PPEK、SPPEK-086、SPPEK-110、SPAEEKK-070與 SPAEEKK-080於不同溫度下之質子傳導度圖(相對溼度為95%) 61
圖4.4 SPPEK-086與Nafion-117在水與不同甲醇濃度水溶液下膜材的吸收量 62
圖4.5 SPPEK-110和Nafion-117在水與不同甲醇濃度水溶液下膜材吸收量 63
圖4.6 SPAEEKK-070與Nafion-117在水與不同甲醇濃度水溶液下膜材吸收量 64
圖4.7 SPAEEKK-080與Nafion-117在水與不同甲醇濃度水溶液下膜材吸收量 65
圖4.8 各膜材在不同溫度下,每個SO3-官能基可吸收水分子個數之關係圖 66
圖4.9 膜材Nafion-117、SPPEK-086、SPPEK-110、SPEEKK-070與SPEEKK-080於30 oC膜材吸收甲醇濃度與進料組成之關係圖 67
圖4.10 膜材Nafion-117、SPPEK-086、SPPEK-110、SPEEKK-070與SPEEKK-080於40 oC膜材吸收甲醇濃度與進料組成之關係圖 68
圖4.11 膜材Nafion-117、SPPEK-086、SPPEK-110、SPEEKK-070與SPEEKK-080於50 oC膜材吸收甲醇濃度與進料組成之關係圖 69
圖4.12 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)與SPAEEKK-070 (58 ?慆)於30 oC下滲透通量對進料組成之關係圖 70
圖4.13 膜材Nafion-117、SPPEK-086與SPAEEKK-070於30 oC下滲透物組成對進料組成之關係圖膜材 71
圖4.14 Nafion-117(187 ?慆)、SPPEK-086 (78 ?慆)、SPPEK-110 (76?n?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48 ?慆)於40 oC下滲透通量對進料組成之關係圖 72
圖4.15 Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080於40 oC下滲透物組成對進料組成之關係圖 73
圖4.16 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)、SPPEK-110 (76 ?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48 ?慆)於50 oC下滲透通量對進料組成之關係圖 74
圖4.17 膜材Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080於50 oC下滲透物組成對進料組成之關係圖膜材 75
圖4.18 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)、SPPEK-110(76 ?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48 ?慆)之溫度對水滲透量關係圖 76
圖4.19 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)、SPPEK-110(76 ?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48?n?慆)於1 M進料甲醇水溶液之溫度對滲透量關係圖 77
圖4.20 膜材Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080於1M進料甲醇水溶液之溫度對滲透物組成關係圖 78
圖4.21 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)、SPPEK-110(76 ?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48 ?慆)於3M進料甲醇水溶液之溫度對滲透量關係圖 79
圖4.22 膜材Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080於3M進料甲醇水溶液之溫度對滲透物組成關係圖 80
圖4.23 膜材Nafion-117(187 ?慆)、SPPEK-086(78 ?慆)、SPPEK-110(76 ?慆)、SPAEEKK-070(58 ?慆)與SPAEEKK-080(48 ?慆)於5M進料甲醇水溶液之溫度對滲透量關係圖 81
圖4.24 膜材Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080於5M進料甲醇水溶液之溫度對滲透物組成關係 82
圖4.25 膜材Nafion-117、SPPEK-086、SPPEK-110、SPAEEKK-070與SPAEEKK-080在進料3 M甲醇水溶液下,滲透係數對溫度之關係圖 83
Allcock, H. R., Michael A. H., Catherine M. A., Serguei N. L., Xiangyang Y. Z., Elena C., Jamie W., “Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells,” J. Membr. Sci., 201, 47-54 (2002)

Carretta, N., V. Tricoli, F. Picchioni, “Ionomeric membranes based on partically sulfonated poly(styrene): synthesis, proton conduction and methanol permeation, ” J. Membr. Sci., 166, 189-197 (2000)

Cho, K.-Y., J.-Y. Eom, H.-Y. Jung J, N.-S. Choi, Y. M. Lee, J.-K. Park, J.-H. Choi, K.-W. Park, Y.-E. Sung, “Characteristics of PVdF copolymer/Nafion blend membrane for direct methanol fuel cell(DMFC),” Electrochim. Acta, 50, 583-588 (2004)

Colton, CK., “Permeability and transport studies in batch and flow dialyzers with applications to hemodialysis,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachuseets (1969)

Cui, W., J. Kerres, G. Eigenberger, “Development and characterization of ion-exchange polymer blend membranes,” Sep. and Purif. Tech., 14, 145-154 (1998)

Dimitrova, P., K.A. Friedrich, U. Stimming, B. Vogt, “Modified Nafion-based membranes for use in direct methanol fuel cell,” Solid State Ionics, 150, 115-122 (2002)

Dimitrova, P., K.A. Friedrich, B. Vogt, U. Stimming, “Transport properties of ionomer composite membranes for direct methanol fuel cells,” J. Electroanal. Chem. ,532, 75-83 (2002)

Drioli, E., A. Regina, M. Casciola, A. Oliveti, F. Trotta, T. Massari, ”Sulfonated PEEK-WC membranes for possible fuel cell applications,”J. Membr. Sci., 228, 138-148(2004)

Elabd, Y. A., Eugene N., James M. S., Dawn M. C., Charles W. W., “Triblock copolymer ionomer membranes Part I. Methanol and proton transport,” J. Membr. Sci., 217, 227-242 (2003)

Einsla, B. R., Yu S. K., Michael A. H., Y.-T. Hong, Melinda L. H., Bryan S. P., James E. M., “Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells II. Membrane properties and fuel cell performance,”J. Membr. Sci., 255, 141-148 (2005)

Feng, X., R.Y.M. Huang, “Liquid separation by membrane pervaporation:A review,” Ind. Eng. Chem. Res., 36, 1048-1066 (1997)

Gao, Y., Gilles P. R., Michael D. G., Xigao J., ”Synthesis and chacterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials,” J. Polym. Sci. A: Polym. Chem., 41, 497-507(2003)

Gao, Y., Gilles P. R., Michael D. G., Serguei D. M., Xiang L., Serge K., “Synthesis of Poly(aryleme ether ether ketone ketone) Copolymers Containing Pendant Sulfonic Acid Groups Bonded to Naphthalene as Proton Exchange Membrane Materials,” Macromol., 37, 6748-6754 (2004)

Gao, Y., Gilles P. R., Michael D. G., Serguei D. M., Xiang L., and Serge K., ”Synthesis of copoly(aryl ether ether nitrile)s containing sulfonic acid groups for PEM application,”Macromol., 38, 3237-3245 (2005)

Gaowen, Z., Zhou Z., “Organic/inorganic composite membranes for application in DMFC,” J. Membr. Sci.,261, 107-113 (2005)

Guo, Q., Peter N. P., Hao T., Sally O’C., “Sulfonated and crosslinked polyphsphazene-based proton-exchange membranes,”J. Membr. Sci., 154, 175-181 (1999)

Jochen, M.-H., Antje T., Claus V., Kornelia S., Wolfgang L., Dieter L., “Membranes from sulfonated block copolymers for use in fuel cells,” Sep. and Purif. Tech., 41, 207-220 (2005)

Jorissen, L., V. G., J. Kerres, J. Garche, “New membranes for direct methanol fuel cells,” J. Power Sources, 105, 167-273 (2002)

Jung, D.H., S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, “Preparation and performance of a Nafion/montmorillonite nanocomposite membrane for direct methanol fuel cell,” J. Power Sources, 118, 205-211 (2003)

Karthikeyan, C.S., S.P. Nunes, L.A.S.A. Prado, M.L. Ponce, H. Silva, B. Ruffmann, K. Schulte, ”Polymer nanocomposite membranes for DMFC application,”J. Membr. Sci., 254, 139-146(2005)

Kim, J. , Bokyung K., Bumsuk J., “Proton conductivities and methanol permeabilities of membranes made from partially sulfonatedpolystyrene-block-poly(ethylene-ran-butylene)-blocl-polystyrene copolymers,” J. Membr. Sci., 207, 129-137 (2002)

Kim, Y. S., Michael A. H., Limin D., Bryan S. P., James E. M., “Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability,” J. Membr. Sci., 243, 317-326 (2004)

Kreuer, K.D., ”On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells,” J. Membr. Sci., 185, 29-39 (2001)

Lee, K., J.-H. Nam, J.H. Lee, S.M. Cho, C.H. Jung, H.G. Choi, Y.-Y. Chang, Y.-U. Kwon, J.-D. Nam, “Methanol and proton transport control by using layered double hydroxide nanoplatelets for direct methanol fuel cell,” Electrochem. Commun., 7, 113-118 (2005)

Li, L., Yuxin W., “Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell,” J. Membr. Sci., 246, 167-172 (2005)

Li, S., Meilin L., “Synthesis and conductivity of proton-electrolyte membranes based on hybrid inorganic-organic copolymers,” Electrochim. Acta, 48, 4271-4276 (2003)
Mukoma, P., B.R. Jooste, H.C.M. Vosloo, ”A comparison of methanol permeability in Chitosan and Nafion117 membranes at high to medium methanol concentrations,”J. Membr. Sci., 243, 293-299(2004)

Nasef, M.M., N.A. Zubir, A.F. Ismail, M. Khayet, K.Z. M. Dahlan, H. Saidi, R. Rohani, T.I.S. Ngah, N.A. Sulaiman, “PSSA pore-filled PVDF membranes by simultaneous electron beam irradiation: preparation and transport characteristics of protons and methanol,” J. Membr. Sci., 268, 96-108 (2006)

Nunes, S.P., B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, ”Inogranic modification of proton conductive polymer membranes for direct methanol fuel cells,” J. Membr. Sci., 203, 215-225(2002)

Okada, T., M. Yoshikawa, T. Matsuura, “A study on the pervaporation of ethanol-water mixtures on the basis of pore flow model,” J. Membr. Sci., 59, 151-168 (1991)

Okada, T., T. Matsuura, “A new transport model for pervaporation,” J. Membr. Sci., 59, 133-150 (1991)

Okamoto, K., Yan Y., Otoo Y., Md. Nurul I., Tatsuaki H., Takashi M., Yoshiki S., Kazuhiro T., Hidetoshi K., “Methanol permeability and proton conductivity of sulfonated co-polyimide membranes,” J. Membr. Sci., 258, 115-122 (2005)

Park, Y.-S., Yohtaro Y., “Low water/methanol permeable Nafion/CHP organic-inorganic composite membrane with high crystallinity,” Europ. Polym. J., 42, 375-387 (2006)

Reinhart, C.T., R.W. Korsmeyer, N.A. Peppas, “Marcromolecular network structure and its effects on drug and protein diffusion,” Int. J. Pharm. Tech. Prod. Mfr., 2, 9-16 (1981)

Ren, S., Chennan L., Xinsheng Z., Zhimo W., Suli W., Gongquan S., Qin X., Xuefeng Y., “Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells,” J. Membr. Sci., 247, 59-63 (2005)

Ren, S., Gongquan S., Chennan L., Zhimou W., Wei J., Weimin C., Qin X., Xuefeng Y., ”Sulfonated poly(ether ether ketone)/polyvinylidene fluoride polymer blends for direct methanol fuel cells,” Mater. Lett., 60, 44-47 (2006)

Rikukawa, M., Daisuke I., Keiichi K., Yuko T., Iko I., Yoshio K., Kohei S., “Proton conductivity of smart membranes based on hydrocarbon polymers having phosphoric acid groups,” J. Molecul. Struc. , 739, 153-161 (2005)

Rogers, C.E., “Solution and diffusivity,” Physics and Chemistry of the Organic Solid State, Chap. 6, Vol. II, D. Fox, M. M. Labes, and A. Weissberger eds., Wiley-Interscience, New York (1965)

Rogers, C.E. “Permeation of gases and vapour in polymers,” in: J. Comyn, (Ed.), Polymer Permeability, Elservier, London, 1988, Chap. 2.

Saarinen V., T. Kallio, M. Paronen, P. Tikkanen, E. Rauhala, K. Kontturi, “New ETFE-based membrane for direct methanol fuel cell,” Electrochem. Acta, 50, 3453-3460 (2005)

Sauk, J., Jungyeon B., Hwayong K., “Grafting of styrene on to Nafion membranes using supercritical CO2 impregnation for direct methanol fuel cells,” J. Power Sources, 132, 59-63 (2004)

Sauk, J., Jungyeon B., Hwayong K., “Composite Nafion/polyphenylene oxide (PPO) membranes with phosphomolybdic acid (PMA) for direct methanol fuel cells,” J. Power Sources, 143, 136-141 (2005)

Shang, X., Shuanghong T., Linghuan K., Yuezhong M., “Synthesis and characterization of sulfonated fluorine-containing poly(arylene ether ketone) for proton exchange membrane,” J. Membr. Sci., 266, 94-101 (2005)

Shen, M., S. Roy, J.W. Kuhlmann, K. Scott, K. Lovell, J.A. Horsfall, “Grafted polymer electrolyte membrane for direct methanol fuel cells,” J. Membr. Sci., 251, 121-130 (2005)

Shin, J.-P., B.-J. Chang, J.-H. Kim, S.-B. Lee, D. H. Suh, ”Sulfonated polystyrene/PTFE composite membranes,” J. Membr. Sci., 251, 247-254(2005)

Silva, V.S., B. Ruffmann, H. Silva, Y.A. Gallegom, A. Mendes, L.M. Madeira, S.P. Nunes, “Proton electrolyte membrane properties and direct methanol fuel cell performance: Ι. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes,” J. Power Sources, 140, 34-40 (2005)

Silva, V.S., S. Weisshaar, R. Reissner, B. Ruffmann, S. Vetter, A. Mendes, L.M. Madeira, S. Nunes, “Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures,” J. Power Sources, 145, 485-494 (2005)

Smitha, B., S. Sridhar, A.A. Khan, ”Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membrane for fuel cells,” Macromol., 37, 2233-2239 (2004)

Smit, M.A., A.L. Ocampo, M.A. Espinosa-Medina, P.J. Sebastian, “A modified Nafion membrane with in situ polymerized polypyrrole for direct methanol fuel cell,” J. Power Sources, 124, 59-64 (2003)

Wijmans, J. G. and R. W. Baker, “The solution diffusion model:A review,” J. Membr. Sci., 107, 1-21 (1995)

Woo, Y., Se Y. O., Yong S. K., Bumsuk J., “Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell,” J. Membr. Sci., 220, 31-45 (2003)

Yamaguchi, T., Masaya I., Balagopal N. N., Shin-ichi N., “A pore-fillinf electrolyte membrane-elelctrode integrated system for a direct methanol fuel cell application,” J. Electrochem. Soc., 149, A1448-A1453 (2002)

Yang, B., Arumugam M., ”Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells,” Electrochem. Commun., 6, 231-236(2004)

Yoon, S.R., G.H. Hwang, W.I. Cho, I.-H. Oh, S.-A. Hong, H.Y. Ha, “Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering,” J. Power Sources, 106, 215-223 (2002)

Zaidi, S.M.J., S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, “Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications,” J. Membr. Sci., 173, 17-34 (2000)

Zhai, G., E.T. Kang, and K.G. Neoh, ”Inimer graft-copolymerized poly(vinylidene fluoride) for the preparation of arborescent copolymers and“surface-active”copolymer membranes,” Macromol., 37, 7240-7249(2004)

衣寶廉, ”燃料電池–原理與應用五南書局,” 民94年三月

林昇佃, ”燃料電池:新世紀能源,”滄海書局, 民93年2月

陳忠業, ”環境感應行水凝膠藥物控制釋放之應用,” 碩士論文, 元智大學 (1995)
祝鼎新, ”熱感應型高分子單體固定澱粉水姐酵素α-amylase的探討和應用,” 碩士論文, 元智大學 (1997)

羅瑞良, ”聚乙烯-乙烯醇薄膜之製備與其內輸送特性之研究,” 碩士論文, 元智大學 (2001)

江佳芸, ”質子交換膜燃料電池(PEMFC)電極觸媒層變數研究,” 碩士論文, 元智大學 (2002)

李維倫, ”含浸磺酸化聚苯乙烯之聚四氟乙烯膜於燃料電池質子交換膜之應用,” 碩士論文, 元智大學 (2002)

蕭勝陽, ”幾丁聚醣和甲基纖維素鈉聚電解質複合膜在滲透蒸發分離異丙醇與水混合物之應用,” 碩士論文, 元智大學 (2004)

李和謙, “水與甲醇在磺酸化聚電解質膜材之輸送現象探討,” 碩士論文, 元智大學 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top