跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉臨
研究生(外文):Chia-Lin Hung
論文名稱:混合離子交換與薄膜過濾程序有效分離蛋白質混合溶液
論文名稱(外文):Effective Separation of Protein Mixtures by a Hybrid Ion Exchange and Membrane Filtration Process
指導教授:莊瑞鑫莊瑞鑫引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:99
中文關鍵詞:超過濾離子交換
外文關鍵詞:ultrafiltrationion-exchange
相關次數:
  • 被引用被引用:3
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以超過濾膜PAN-100 kDa及PES-100 kDa來進行雙成份蛋白質分離,本實驗所使用的蛋白質為牛血清蛋白(BSA)及牛血紅素(HB),配合Dead-end及Cross-flow過濾膜組來進行實驗。本研究共分為Design-expert實驗設計單成份過濾實驗、Dead-end 雙成份超過濾實驗、Cross-flow雙成份超過濾實驗及添加吸附劑增加單一蛋白質吸附率實驗,最後再以Blocking filtration law來分析阻塞機制。
在Design-expert實驗設計方面,初步得知緩衝溶液pH值低於蛋白質pI點時,容易造成單一蛋白質的截留率大增及清水透過率減低等情況。Dead-end超過濾方面,低壓高pH值時,分離比以pH 7.10時為最佳。添加鹽類0.01 M時,通量降落低,分離效果佳。在Cross-flow超過濾方面,通量降落較Dead-end低20 %左右,極限通量出現在10 ~ 20 psi間,分離比以pH 7.50及7.10時較佳。在阻塞分析方面,濃度比5 : 1 (BSA : HB)當pH ³ 7.10時,過濾初期以孔洞內部阻塞為主,隨著時間拉長,漸以濾餅過濾為主。當pH < 7.10時,阻塞為一複雜情況。在添加吸附劑方面,蒙托土可在pH 7.10時將HB吸附增加雙成份蛋白質分離效率。IRC-76在pH 6.0時對HB有良好吸附效果。
This work used PAN and PES ultrafiltration membranes both MWCO, 100 kDa to separate proteins from binary solutions. Two reagents, bovine serum albumin (BSA) and brovine haemoglobin (HB) were separated via the ultrafiltration process. The study was divided into two parts. First, we used the Design-expert experiment software for analyzing single protein (BSA) filtration data, then we used dead-end and cross-flow modules to separate binary proteins and added adsorbent to improve the separation ability via selective adsorption. Finally, we used blocking filtration law to analyze fouling mechanism.
The design-expert experiment analysis show an increase in the single protein rejection and flux decline at pH < pI. Experiments of dead-end ultrafiltration showed that there is high separation factor at 10 psi and pH 7.10. It was shown that salt will results in a low flux decline and high separation factor. Cross-flow ultrafiltration experiments revealed a 20% less flux decline than the dead-end module, and the critical flux appeared at a pressure of 10 to 20 psi. The separation factor at pH 7.50 and 7.10 was the best. In the case of, the concentration ratio being 5 : 1 ( BSA : HB ) and pH ³ 7.10, the initial filtration mechanism is caused by internal blocking and later is responsible for cake fouling. When pH < 7.10, the blocking mechanism was complex and a model was used to find out the fouling time and fouling flux. The use of montmorillonite to selevtivly adsorb HB can increase the separation factor of HB and BSA.
摘要 I
ABSTRACT II
誌謝 III
目錄 V
圖目錄 IX
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1.1 前言 1
1.2 薄膜的分類 1
1.2.1 對稱膜( Symmetric membranes ) 2
1.2.2 非對稱膜( Asymmetric membranes ) 2
1.2.3 常見之商用Thin-film composite薄膜 4
1.3 薄膜過濾的特性 5
1.3.1 薄膜分離操作之優缺點 5
1.4 過濾程序簡介 8
1.4.1 微過濾( Microfiltration ) 8
1.4.2 超過濾( Ultrafiltration ) 9
1.4.3 奈過濾( Nanofiltration ) 10
1.4.4 逆滲透( Reverse osmosis ) 10
1.5超過濾的膜組件 11
1.6影響超過濾流量之主要因素 11
1.7 薄膜清洗與保存 12
1.8 研究目的與動機 13
第二章 文獻回顧 15
2.1 蛋白質簡介 15
2.1.1 蛋白質組成 15
2.1.2 蛋白質結構 15
2.1.3 蛋白質的分類 15
2.1.4 蛋白質一般性質 16
2.2 過濾堵塞機制 19
2.3 超過濾之相關文獻探討 21
2.3.1 膜材對結垢行為之影響 21
2.3.2 操作變數對結垢行為的影響 22
第三章 實驗部份 26
3.1 實驗儀器與藥品 26
3.1.1 儀器部份 26
3.1.2 藥品部份 27
3.2 實驗步驟及分析方法 28
3.2.1 Design-Expert 推估之最佳實驗絛件 28
3.2.2 單成份蛋白質超過濾實驗 29
3.2.3 雙成份蛋白質超過濾實驗 29
3.2.4 添加鹽類對雙成份蛋白質超過濾實驗之影響 30
3.2.5雙成份蛋白質之掃流超過濾實驗 31
3.2.6 添加蒙托土增加蛋白質分離效率 31
3.2.7 以混成系統分離雙成份蛋白質 32
3.3 蛋白質分析方法 32
第四章 結果與討論 36
4.1 實驗設計法推估單成份蛋白質最佳實驗條件 36
4.1.1 迴歸模式分析 36
4.1.2 改變壓力及濃度之單成份蛋白質截留率 37
4.1.3 改變壓力及pH值之單成份蛋白質截留率 37
4.1.4 改變濃度及pH值之單成份蛋白質截留率 37
4.2 雙成份蛋白質之Dead-end超過濾分析 43
4.2.1 不同壓力、pH值與濃度 43
4.2.2 蛋白質濃度比例不同 49
4.2.3 添加鹽類對雙成分蛋白質過濾之影響 51
4.2.4 薄膜材質不同之Dead-end超過濾分析 57
4.2.5 薄膜阻塞機制之探討 59
4.2.6 通量擬合與Blocking filtration law相互印証 67
4.3雙成份蛋白質之Cross-flow超過濾分析 73
4.3.1 不同壓力、pH值與濃度之超過濾濾速分析 73
4.3.2 添加鹽類對雙成分蛋白質掃流超過濾之影響 78
4.4 添加吸附劑與樹脂增加蛋白質分離效率 80
4.4.1 添加蒙托土對蛋白質分離效果探討 80
4.4.2 添加樹脂對蛋白質分離效率探討 83
4.4.3以混成系統分離雙成份蛋白質 90
第五章 目前結論 93
參考文獻 95
自述 99
參考文獻
Anna, P.; Ann-Sofi, J.; Guido, Z. ”Transmission of BSA during cross-flow microfiltration influence of pH and salt concentration”, J. Membr. Sci., 223, 11-21 (2003).
Akon, H.; Satoko, M.; Tsutomu, N. ”Separation of proteins by surface modified polysulfone membranes”, J. Membr. Sci., 57, 175-185 (1997).
Bowen, W.R.; J.I. Calvo,; A.Hernandez, “Steps of membrane blocking in flux decline during protein microfiltration”, J. Membr. Sci., 55(1-2), 21-38 (1991) .
Clark, M.W.; A. Bansal,; M. Sontakke,; Y.H. Ma, “Protein adsorption and fouling in ceramic ultrafiltration membranes”, J. Membr. Sci., 101, 153-165 (1991) .
Christel, C.; Yilmaz K.; Pierre A. “Protein fraction using selective adsorption on clay surface before filtration“, J. Membr. Sci., 189, 165-181 (2001).
Douglas, B.B.; Andrew, L.Z. ”Buffer effects on the zeta potential of ultrafiltration membranes”, J. Membr. Sic., 172, 39-48 (1999).
Eriksson, P.; M. Kyburz,; W. Pergande, ”NF membrane characteristics and evaluaion for sea water processing application”, Desalination., 184, 281-294 (2005).
Fane, A.G.; C.J.D Fell,; A.G. Waters, ”Ultrafiltraion of protein solution through partially permeable membranes”, J. Membr. Sci., 16, 211-224 (1983).
Fane, A.G.; C.J.D. Fell,; A. Suki, ”The effect of pH and ionic environment on the ultrafilation of protein solutions with retentive membranes”, J. Membr. Sci., 16, 195 (1983).
Feins, M.; K.K. Sirkar, ”Highly selective membranes in protein ultrafiltraion “, Biotechnol. Bioeng., 68, 603 (2004).33
Ghosh, R.; Z.F. Gui, ”Fractionation of BSA and lysozyme using ultrafilation: effect of pH and membrane pretreatment”, J. Membr. Sci., 139, 17-28 (1998).
Gill, W.N.; D.E. Willey,; C.J.D. Fell,; A.G. Fane, ”Effect of viscosity on concentration polarization in ultrafiltraion”, AIChE J., 34, 1563 (1988).
Ghosh, R.; Z.F. Cui, ”Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment”, J. Membr. Sci., 139, 17-28 (1997).
Harrison, R., ”Protein Purification Process Engineering”,Marcel Dekker, New York, 1994.
Heinemann, P.; J.A. Howell,; R.A. Bryan, ”Microfiltration of protein solution: Effect of fouling on rejection”, Desalination., 68, 243 (1988).
Hermia, J. “Constant pressure blocking filtration laws-Application to power-law non-newtonian fluids “, Trans. I. Chem. E., 60, 183-187 (1982) .
Herrero, C., P. Pradanos, J.I. Clavo, F. Tejerina,; A. Hernandez, “Flux decline in protein microfiltraion influence of operative parameters“, J. Colloid Interface Sci., 187, 344-351 (1997) .
Ho, C.C.; A.L. Zydney, “Effect of membrane morphology on the initial rate of protein fouling during microfiltration”, J. Colloid Interface Sci., 155, 261-275 (1999) .
Ho, C.C.; A.L. Zydney, “A combined pore blockage and cake filtration model for protein fouling during microfiltration”, J. Colloid Interface Sci., 232, 389-399 (2000).
Iritani, E.; Y.Tanaka.; T.Murase, “Flux decline behavior in dead-end microfiltration of protein solutions”, J. Membr. Sci., 103, 181-191 (1995) .
Kelly, S.T.;W. Senyo,; Opong,; A.L. Zydney, ”The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration”, J. Membr. Sci., 80, 175-187 (1993).
Kimberly, L.J.;Charles, R.O’Melia. ”Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength”, J. Membr. Sci., 165, 31-46 (2000).
Kimberly, L.J.; Charles, R.O’Melia. ”Ultrafiltration of protein and humic substances: effect of solution chemistry fouling and flux decline”, J. Membr. Sci., 193, 163-173 (2001).
Kontturi, A.K.; K. Kontturi,; M. Vouristo, ”Separation of protein of nearly the same size but different isoelectric points by convective electrophoresis”, Acta. Chemica. Scandinavica., 50, 102-106 (1996).
Marijana, D.C.; Spasenija, D.M.; Darko, M.K.; Miodrag, N.T. ”Fouling of inorganic membranes by adsorption of whey proteins”, J. Membr. Sci., 165, 83-88 (2000).
Matsumoto, Y.; S. Nakao,; S. Kimura, “Cross-flow filtration of solution of polymers using ceramic microfiltration”, Int. Chem. Eng., 28, 677-683 (1988).
Mondor, M.; B. Girard.; C. Moresoli, ”Modeling flux behavior for membrane filtration of apple juice”, Food res. int., 33, 539-548 (2000).
Musale, D.A.; S.S. kulkarni, ”Realtive rates of protein transmission through poly(acrylonitrile) based ultrafiltration membranes”, J. Membr. Sci., 136, 13-23 (1997).
Nakao, S.; H. Osada,; H. Kurala,; T. Suru,; S. Kimura, ”Spearation of protein by charged ultrafiltration membranes”, Desalination, 70, 191-205 (1988).
Palecek, S.P.; S. Mochizuki,; A.L. Zydney, ”Eff`ect of ionic environment on BSA filtration and the properties of BSA deposits”, Desalination., 90, 147 (1992).
Sari, M.; Satu-Pia. R.;Marianne, N. ”Analysis of protein filtration data by PLS regression”, Desalination., 149, 453-458 (2002).
Scopes, R.K., ”Protein Purification Principles and Practice 3rd ed”,Springer Verlag, New York, 1994.
Scott, P.K. “Overview of the application of synthetic membrane processes “ in Industrial Membrane Separation Technology, Blackie Academic & Professional, London, 1996, Chapter 2.
Stopka, J.; S.G. Bugan,; S. Schlosser,; A. Larbot, ”Microfiltraion of beer yeast suspension through stamped ceramic membrane”, Sep. Puri. Technol., 25, 533-546 (2001).
Tracey, R.M.; R.H. Davis, “Protein fouling of track-etched polycarbonate microfiltration membranes”, J. Colloid Interface Sci., 167, 104-116 (1994) .
William, K,; Elizabeth, K,; Geoffrey, B.C. ”High velocity reversed-phase chromatography of proteins and peptides: use of conventional C18, 300 A, 15 mm particles”, J. Chromatography A., 690, 9-19 (1995).
賴君義,「分離用高分子薄膜材料」,化工技術,第一卷第二期,74頁(1993)。
呂維明、呂文芳,「過濾技術」,高立書局,臺灣,345 ~ 346 頁,(1994)。
焦自強、曾再微,「分離膜程序淺談」,化工技術,第三卷第四期,140頁(1995)。
林公璿,「以超音波改善薄膜過濾W/O懸浮乳液之濾速」,碩士論文,元智大學,臺灣( 2001 )。
邱垂煥,「聚電解質輔助薄膜過濾程序中之離子去除率與結垢分析」,碩士論文,元智大學,21 ~ 23頁,臺灣( 2001 )。
邱東林,「奈米過濾對從巨分子溶液中分離胺基酸與胜肽之探討」,碩士論文,淡江大學,2 ~ 3頁,臺灣( 2003 )。
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top