跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江學墀
研究生(外文):Shiue-Chih Chiang
論文名稱:液相與氣相法直接合成奈米銀負載之氧化矽溶膠與粉體
論文名稱(外文):Direct Synthesis of Nano-Silver Loaded Silica Sols and Powders via Liquid and Gas Phase Methods
指導教授:張幼珍
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:88
中文關鍵詞:溶膠凝膠火焰噴霧熱解二氧化矽複合材料
外文關鍵詞:sol-gelflame spray pyrolysissilvercompositesilica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是利用液相法(溶膠凝膠法)及氣相法(火焰合成法)合成銀-矽複合材料粒子。其中,以液相法合成銀-二氧化矽複合粒子可分為兩種做法︰一種是將銀直接合成在二氧化矽表面上,另外一種則是利用已修改過的Stobe方法製備。在液相法中,我們將討論不同的配製方法及不同的還原處理步驟,對於銀分布在二氧化矽上的影響。而至於氣相法,我們將討論銀的添加量多寡對於生成粒子特性的影響。
在“合成銀附著於二氧化矽複合粒子”這個實驗中,我們可以由XRD及EDX的分析結果發現,產物粒子中的銀跟二氧化矽已經順利結合。利用[Ag(NH3)2]+ 錯離子所配製的複合粒子,其所附載的銀元素量大於由Ag+ 離子所配製的粒子。根據TEM的分析結果,利用硼酸氫鈉所還原的銀粒子,其粒子大小較利用熱還原處理的銀粒子大。而這個結果將影響到銀附著在二氧化矽的量及分佈,因為當銀粒子大到某個程度將會影響銀的附著能力。粒子大其附著能力較差,因此銀粒子容易在清洗的實驗過程中流失。因此利用熱還原的複合粒子的銀負載量大於利用還原劑還原的複合粒子。至於另一種利用修改過的Stobe方法所配製的實驗,我們得到銀-二氧化矽複合粒子相互連結的結構。
至於火焰合成法,在先驅物中添加不同酸鹼催化劑,此舉將可以得到截然不同形貌的銀-二氧化矽複合產物。在酸性條件下(硝酸),我們可得到具有完美圓形的球形粒子產物,其粒子大小落在50nm至700nm之間。當銀的添加量比例達到0.15 (Ag/Si),其合成的複合粒子其形貌和未加銀的粒子形貌差不多,其粒徑一樣介於50nm到700nm之間。在高濃度的銀條件下(Ag/SiO2 = 0.5),其複合粒子的形貌已經開始有些變形,似乎不若先前的圓。利用TEM觀察分佈在二氧化矽中的銀粒子,其粒徑大小分較先前的複合粒子粒徑廣,粒境介於5nm to 40nm之間。在鹼性條件下(氨水),我們可得到片狀的薄膜結構,並且隨著銀的添加量增加,其薄層的厚度將逐漸減少並趨於緻密。
Silver-loaded composite particles have been synthesized by liquid method (sol-gel technique) and gas method (flame synthesis). It can separate into two sol-gel fabrication processes were investigated to make silica sphere containing Ag nanoparticles: (1) a Ag-coated process on silica particle, and (2) a modified Stober method for silica spheres. In synthesis of Ag-coated composite particle, it discussed not only the effects of preparation for the distribution of Ag-loaded on silica surface, but also observed the influence of reducing treatment. The experiment of synthesis of Ag-doped silica particle was studied to fabricate the Ag/SiO2 miscellaneous composite by various preparations. At last, we discussed the effect of the adding of Ag/Si ratio in investigation of synthesis of Ag/SiO2 composite via flame technique.
For synthesis of Ag-coated composite particle, the results of XRD and EDX represented that the silver was combined with silica successfully. It had more silver on silica particles which employed [Ag(NH3)2]+ to manufacture, and the fewer quantity of silver loaded on silica surface by used Ag+ ion to prepare. Silver particle would grow larger by NaBH4 reducing regent by TEM analysis, and this result would cause the adsorption of silver reduced and easy to lose away by wash treatment. Therefore the quantity of Ag-loaded which prepared by reducing agent was lower than it prepared by heat reducing treatment. For the other liquid method, It obtained the linked structure of Ag/SiO2 composite by modified Stober method.
For flame synthesis, there were obtained that Ag/SiO2 composite had the different morphology by employed different of catalyst. In the acid condition (HNO3), perfect circular spheres were obtained which size range was between 50nm to 700nm by SEM analysis. At the ratio of Ag/SiO2 was 0.15, there were smaller silver particle distributed well in or on silica nano-particle, which the range of diameter between 2nm to 6.5nm by TEM analysis. At higher the adding of silver (Ag/SiO2 = 0.5), the morphology of particle was changed slightly. By TEM analysis, the size range of silver was more extensive than before (Ag/SiO2 = 0.15) which between 5nm to 40nm. There were the flaky structure was obtained which prepared by NH4OH. At the condition of Ag-added, the structure thickness was seam more thin than sample without Ag-added, and the density of structure was also higher than without Ag-added sample.
Title Page……………………………………………………………………………. Ⅰ
Chinese Abstract.……………………………………………………………………. Ⅱ
English Abstract………..……………...…………………...……………………….. Ⅳ
Table of Contents.……...…………………………………………….……………… Ⅵ
List of Tables..………………………………………………………………………. Ⅷ
Table of Figures..……………………………………………………………………. Ⅸ
Chapter 1 Introduction………………………………………………………………. 1
1.1 Preface 1
1.2 Purpose of This Study 2
Chapter 2 Literature Review……………………………………….…...................... 4
2.0 Introduction………………………..………………………………….. 4
2.1 Introduction of Sol-Gel……………...………………………………... 5
2.1.1 Process of Sol-Gel…………..……………………………… 5
2.1.2 Parameters in Sol-Gel System……………………………… 6
2.1.2.1 Effect of pH………………………………………. 6
2.1.2.2 Effect of Catalysts…………………...…………… 8
2.1.2.3 Effect of Solvents………………………………… 9
2.2.2.4 Effect of Temperature……………………..……... 10
2.2.2.5 Effect of H2O/Si molar ratio (R)………………….. 11
2.1.3 The Principle of Chemical Reduction of Silver…………….. 11
2.2 Literature review of Ag/SiO2 Composite Particles…………………… 12
2.3 Introduction of Flame Synthesis……………………………………… 17
2.3.1 Diffusional Flame and Premixed Flame…………………….. 17
2.3.2 Low Pressure Flat Flame…………………………………….. 18
2.3.3 The development of flame method………………………….. 21
2.4 Motivation of This Study……………………………………………... 25
Chapter 3 Experimental……………………………………………………………... 26

3.0 Introduction…………………………………………………………… 26
3.1 Materials……………………………………………………………… 26
3.2 Sol-Gel Synthesis of Ag-coated Silica Particles…………………….... 27
3.2.1 Preparation procedure for sample C-AgAS-R…...…………. 27
3.2.2 Preparation procedure for sample C-AgAS-H……………… 27
3.2.3 Preparation procedure for sample C-AgS-R………………... 28
3.2.4 Preparation procedure for sample C-AgS-H………………... 28
3.2.5 Preparation procedure for sample C-AgSA-R……………... 28
3.2.6 Preparation procedure for sample C-AgSA-H……………... 29
3.2.7 Preparation procedure for sample C-SAg…………………... 29
3.3 Sol-Gel Synthesis of Ag-doped Silica Particles………………….…… 29
3.3.1 Preparation procedure for sample D-1…………………….... 30
3.3.2 Preparation procedure for sample D-2…………………….... 30
3.3.3 Preparation procedure for sample D-3…………………….... 31
3.4 Flame Synthesis of Ag/SiO2 Composite Particles……………………. 31
3.4.1 Preparation procedure for sample F-HNO3-0………………. 32
3.4.2 Preparation procedure for sample F-HNO3-0.15…..………. 32
3.4.3 Preparation procedure for sample F-HNO3-0.5……………. 32
3.4.4 Preparation procedure for sample F-NH4OH-0…………….. 32
3.4.5 Preparation procedure for sample F-NH4OH-0.15..……….. 33
3.4.6 Preparation procedure for sample F-NH4OH-0.5………….. 33
3.5 Powder Characterization……………………………………………… 33
3.5.1 Transmission Electron Microscopy (TEM)………………… 33
3.5.2 Scanning Electron Microscopy (SEM)……………………... 33
3.5.3 X-ray Diffraction (XRD)…………………………………… 34
3.5.4 Energy Dispersive Spectroscopy (EDX)…………………… 34
Chapter 4 Results and Discussion…………………………………………………... 37
4.1 Sol-Gel Synthesis of Ag-coated Silica Particle……….……………… 37
4.1.1 XRD analysis……………………………………………….. 38
4.1.2 EDX analysis……………………………………………….. 39
4.1.3 SEM analysis……………………………………………….. 40
4.1.4 TEM analysis……………………………………………….. 41
4.2 Sol-Gel Synthesis of Ag-doped silica particle....................................... 59
4.2.1 XRD analysis……………………………………………….. 60
4.2.2 EDX analysis……………………………………………….. 60
4.2.3 SEM analysis……………………………………………….. 61
4.3 Flame Synthesis of Ag/SiO2 Composite Particles………………….… 68
4.3.1 XRD analysis……………………………………………….. 68
4.3.2 EDX analysis……………………………………………….. 69
4.3.3 SEM analysis……………………………………………….. 70
4.3.4 TEM analysis……………………………………………….. 71
Chapter 5 Conclusions………………………………………………………………. 85
References……………..……………………………………………………………. 86
1.Aelion, R.; Loebel, A.; Eirich, F. J. Am. Chem. Soc. 1950, 72, 5705.
2.Aelion, R.; Loebel, A.; Eirich, F. Recueil Travaux Chimiques 1950, 69, 61.
3.Arai, Y.; Segawa, H.; Yoshida, K. J. of Sol-Gel Sci. and Technol. 2004, 32, 79.
4.Arai, Y.; Segawa, H.; Yoshida, K. J. of Sol-Gel Sci. and Technol. 2004, 32, 78.
5.Artaki, I.; Zerda, T. W.; Jonas, J. J. Non-Crystalline Solids 1986, 81, 381.
6.Assink, R. A.; Kay, B. D. J. Non-Crystalline Soilds 1988, 99, 359.
7.Bogush, G. H.; Tracy, M. A., Zukoski, C. F. J. Non-Cryst. Solids 1988, 104, 95.
8.Brinker C. J.; Scherer, G.. W. Sol-gel science, Academic Press 1990.
9.Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Phys. and Chem. of Sol-Gel Processing, New York, 1990.
10.Chang, S. M.; Lee, M.; Kim, W. S. J. of Colloid and Interface Sci. 2005, 286, 536.
11.Chen, Z.; Gang, T.; Wang, Y.; Chen, X.; Guan, C.; Zhang, J.; Sun, Z.; Zhang, K.; Zhao, B.; Yang, B. Colloid and Surf. 2006, 277, 37.
12.Chung, Y. W.; Leu, I. C.; Lee, J. H.; Hon, M. H. J. of Crystal Growth 2005, 275, e2389.
13.Douy, A. J. of the European Ceramic Soc. 2006, 26, 1447.
14.Glumac, N. G.; Goodwin, D. G. Materials Lett. 1993, 18(3), 119.
15.Gundiah, G.; Deepak, F. L.; Govindaraj, A.; Rao, C. N. R. Chem. Phys. Lett. 2003, 381, 579.
16.Han, D. I.; Hah, H. J.; Park, H. W.; Koo, S. M. J. of Sol-Gel Sci. and Technol. 2004, 32, 47.
17.Hannemann, S.; Grunwaldt, J. D.; Krumeich, F.; Kappen, P.; Baiker, A. Applied Surf. Sci. 2005.
18.Helden, A. K. Van; Jansen, J. W.; Vrij, A. J. Collid Interface Sci. 1981, 81, 354.
19.Iler, R. K. The chemistry of silica, Wiley: New York 1979.
20.Janzen, C.; Knipping, J.; Rellingghaus B.; Roth, P. J. of Nanoparticle Research 2003, 5, 589.
21.Kalinin, D. V.; Serdobintseva, V. V.; Danilyuk, A. F.; Vosel, S. V.; Rudina, N. A. React. Kinet. Catal. Lett. 2003, Vol. 80, No. 1, 89.
22.Kang, Y.C.; Seo, D. J.; Park, S. B.; Park, H. D. Material Research Bulletin 2002, 37, 263.
23.Kim, K. D.; Kim, H. T. J. of Sol-Gel Sci. and Technol. 2002, 25, 183.
24.Kim, S. S. Ceramics International 2004, 30, 171.
25.Klein, L. C. Ann. Rev. Mater. Sci. 1985, 15, 227.
26.Lee, J. M.; Kin, D. W.; Jun, Y. D.; Oh, S. G. Materials Research Bulletin 2006.
27.Li, T.; Moon, J.; Morrone, A. A.; Mecholsky, J. J.; Talham, D. R.; Aair, J. H. Langmuir 1999, 15, 4328.
28.Lin, F. X.; Xiao, Y.; Li, Y. S. J. of Raman Spectroscopy 2001, 32, 73.
29.Liu, F. X.; Xiao, Y.; Li, Y. S. J. of Raman Spectroscopy 2001, 32, 73.
30.McNeill, K. J.; DiCaprio, J. A.; Walsh, D. A.; Pratt, R. F. J. Am. Chem. Soc. 1980, 102, 1895.
31.Mine, E.; Nagao, D.; Kobayashi, Y.; Konno, M. J. of Sol-Gel Sci. and Technol. 2005, 35, 197.
32.Muniz-Miranda M. Colloids and Surf. 2003, 217, 187.
33.Muniz-Miranda, M. Colloid and Surf. 2003, 217, 185.
34.Pao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K. J. of Colloid and Interface Sci. 2005, 289, 125.
35.Park, S. K.; Kim, K. D.; Kim, H. T. Colloids Surf. 2002, A 197, 7.
36.Pol, V. G..; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A. Langmuir 2002, 18, 3352.
37.Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A. Langmuir 2002, 18, 3352.
38.Qi, S.; Chen, D.; Tang, F. Q.; Rex, X. L.; Xie, F. Z. Chinese J. of Inorganic Chem. 2006, 01, 1001.
39.Qi, S.; Chen, D.; Teng, F. Q.; Ren, X. L.; Xie, F. Z. Chinese J. of Inorganic Chem. 2006, 01, 1001.
40.Shibata, S.; Aoki, K.; Yand, T.; Yamane, M. J. of Sol-Gel Sci. and Technol. 1997, 11, 279.
41.Silva, C. R.; Airoldil, C. J. of Colloid and Interface Sci. 1997, 195, 381.
42.Singhal, A.; Skandan, G.; Glumac, N.; Kear, B. H. Scripta mater 2001, 44, 2203.
43.Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
44.Tani, T.; Madler, L.; Pratsinis, S. E. J. of Materials Sci. 2002, 37, 4627.
45.Ulrich, G. D.; Riehl, J. W. J. of Colloid and Interface Sci. 1982, 87, NO. 1.
46.Wang, H. C. Analysis of the Parameter in a Sol-Gel Process for Preparing SiO2 Nanoparticles Using Response Surface Methodology, Chung Yuan Christian University, Chemical Engineering, Thesis 2002.
47.Wang, J. X.; Weng, L. X.; Weng, Z. H.; Chen, J. F. Materials Chem. and Phys. 2006, 96, 90.
48.Wright, J. D.; Sommerdijk, Nico A. J. M. Sol-gel materials, Gordon and Breach Sci. Publishers 2001.
49.Zhang, D. B.; Cheng, H. M.; Ma, J. M.; Wang, Y. P.; Gai, X. Z. J. of Materials Sci. Lett. 2001, 20, 439.
50.Zhu, M.; Qian, G.; Hong, Z.; Wang, Z.; Fan, X.; Wang, M. J. of Phys. and Chem. of Solid 2005, 66, 748.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top