跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許志群
研究生(外文):Chih-Chun Hsu
論文名稱:低壓扁平焰中噴霧熱解合成YAG金屬氧化物
論文名稱(外文):The Synthesis of YAG Powders by Spray Pyrolysis in Low Pressure Flat Flame
指導教授:張幼珍蔡春進蔡春進引用關係林錕松
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:72
中文關鍵詞:金屬氧化物低壓扁平焰氧化鋁釔鋁石榴石氧化釔
外文關鍵詞:metal oxideslow-pressure flat flameyttrium aluminum garnetaluminayttrium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究以低壓扁平焰噴霧熱分解技術合成金屬氧化物粉體釔鋁石榴石(yttrium aluminum garnet, YAG),此技術原理為液體轉化成微粒並在氣相製程中進行乾燥與熱解,熱源為一低壓扁平焰。本研究中為探討YAG微粒形貌的生成機制與粉體特性,以及是否需要後處理來獲得YAG晶相,除合成YAG粉體,也嘗試單一氧化物-氧化鋁(Al2O3)及氧化釔(Y2O3)-粉體之合成。此外,研究中也嘗試製備奈米銀負載之氧化物與孔洞設計的氧化物粉體。實驗方面以甲烷過量之燃燒條件與固定操作壓力條件(~50 torr)下進行,粉體特性分析包括以掃描式電子顯微鏡(Scanning electron microscopy, SEM)與穿透式電子顯微鏡(Transmission electron microscopy, TEM)來觀察粉體,粒徑大小介於次微米到奈米間,YAG與氧化鋁粉體的形狀接近球形且分散性良好,氧化釔粉體粉體則呈現較不規則的形貌,不同先驅物鹽也會影響粉體形貌。以X光繞射(X-ray diffraction, XRD)進行化學組成判定與粉體晶格(grain size)大小之分析發現,粉體晶粒大小隨後段熱處理溫度上升而增大,此外,以X射線能量散佈分析儀(Energy dispersive spectroscopy, EDX)對製備之粉體進行元素組成比例之半定量分析。
In this study, yttrium aluminum garnet (YAG) was synthesized by spray pyrolysis in low-pressure flat flame. The techniques follow a liquid-to-particle formation process in the gas phase, with a low-pressure flat flame as the major heat source. One of the major focuses of this study was to investigate the formation mechanism for the flame-derived particle morphology. Hence, single oxides such as alumina (Al2O3) and yttrium oxide (Y2O3) were also prepared using corresponding nitrate precursors. Also, an investigation on whether post-annealing was necessary for achieving the required crystal phase was also conducted. In addition, the synthesis of metal-metal oxide composite particles and porosity-controlled metal oxide particles were also attempted. The combustion conditions used in this experiment are excess methane and the operating pressure was ~50 torr. The characteristics of the flame-derived powders were analyzed using SEM, FE-SEM and TEM. The results showed that most particles are with sizes in the submicrometer to nanometer size range. The majority of the particles were spherical except yttrium oxide. Also shown are XRD and EDX results with which the crystal phase and size, elemental composition, and atomic ratios.
Page
Title Page
Chinese Abstrac I
English Abstract II
Acknowledgement III
Table of Contents IV
List of Tables VII
List of Figures IX
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation of This Study 2
Chapter 2 Literature Review 3
2.0 Introduction 3
2.1 Particle Synthesis Techniques 3
2.1.1 Solid-State Method 3
2.2.2 Sol-Gel Method 4
2.1.3 Hydrothermal Method 5
2.1.4 Co-Precipitation Method 5
2.1.5 Spray Pyrolysis 6
2.1.6 Chemical Vapor Deposition (CVD) 6
2.2 Flame-based Heat Source for Particle Synthesis 7
2.2.1 Abstract of flame synthesis 7
2.2.2 Combustion 7
2.2.3 Diffusional Flame 9
2.2.4 Premixed Flame 10
2.2.5 Particle collection mechanism in the low pressure flat flame system 15
2.3 Metal Oxide Particle Synthesis and Applications 17
2.3.1 Aluminium oxide 17
2.3.2 Yttrium oxide 17
2.3.3 Yttrium Aluminum Garnet (YAG) 17
2.3.3.1 Solid-State Method 19
2.3.3.2 Liquid Phase Methods 19
2.3.3.3 Gas-Phase Methods 20
2.4 Objectives of This Study 23
Chapter 3 Experimental
3.0 Introduction 24
3.1 Description of the Experimental System 24
3.2 Particle Characterisization 26
3.2.1 Scanning electron microscope (SEM) and Field emission scanning electron microscope (FE-SEM) 26
3.2.2 Energy dispersive X-ray spectroscopy (EDS) 26
3.2.3 X-ray diffraction (XRD) 26
3.3 Materials 27
3.4 Preparation of Precursor Solutions 28
3.4.1 Precursor of Alumina Al2O3 28
3.4.2 Precursor of Alumina Al2O3 mixed AgNO3 28
3.4.3 Precursor of Yttrium oxide Y2O3 28
3.4.4 Precursor of yttrium aluminum garnet, Y3Al5O12 (YAG) 28
3.4.4.1 Nitrate precursor solution 28
3.4.4.2 Nitrate precursor with silver nitrate added 29
3.4.4.3 Mixed nitrate and acetate solution 29
Chapter 4 Results and discussion 31
4.0 Introduction 31
4.1 Synthesis of Aluminum Oxide Particles 31
4.1.1 SEM 31
4.1.2 XRD 32
4.1.3 EDX 36
4.1.4 TEM 36
4.2 Mixed Silver Nitrate to Alumina Precursor 39
4.2.1 SEM 39
4.2.2 XRD 39
4.2.3 EDX 42
4.2.4 TEM 45
4.3 Synthesis of Yttrium Oxide Particles 50
4.3.1 SEM 50
4.3.2 XRD 51
4.3.3 EDX 51
4.4 Synthesis of Yttrium Aluminum Garnet (YAG) 54
4.4.1 Nitrate Precursor Solution 54
4.4.1.1 SEM 54
4.4.1.2 XRD 54
4.4.1.3 EDX 56
4.4.1.3 TEM 56
4.4.2 Aluminum, Yttrium, and Silver Nitrate Mixed Precursor Solution 61
4.4.2.1 SEM 61
4.4.2.2 XRD 61
4.4.2.3 EDX 61
4.4.3 Yttrium Nitrate and Aluminum Acetate Mixed Precursor Solution 62
4.4.3.1 SEM 62
4.4.3.2 XRD 62
Chapter 5 Conclusions 67
Reference 68
1.Wang, S.; Yamamoto, F.; Akatsu, T.; Tanabe, Y.; Yasuda, E. “Metastable precipitation of YAIO3 in isothermally solidified YAG/(Al2O3-rich) spinel composites,” Journal of Materials Science 33, 5157 – 5162 (1998)
2.Patanka, S.N.; Zhang, D.; Adam, G.; Froes, F.H., “Processing of yttrium–aluminum garnets under non-equilibrium conditions,”Journal of Alloys and Compounds 353, 307–309 (2003)
3.Dobrzycki, L.; Bulska, E.; Pawlak, D.A.;Frukacz, Z.; Wozniak, K.,“Structure of YAG Crystals Doped/Substituted with Erbium and Ytterbium,” Inorganic Chemistry, Vol. 43, No. 24, (2004)
4.Filatov, Y.A.; Zakharov, V.V., “New Al-Mg-Sc alloys,”Mater. Sci&Eng., A280, 97-101,(2002)
5.Zhang, Q.; Saito, F., “Mechanochemical solid reaction of yttrium oxide with alumina leading to the synthesis of yttrium aluminum garnet,”Powder Technology 129, 86-91 (2003)
6.Patankar, S.N.; Zhang, D.; Adam, G. ; Froes, F.H., “Processing of yttrium aluminum garnets under non-equilibrium conditions,”Journal of Alloys and Compounds 353, 307-309 (2003)
7.Pan, Y.; Wu, M.; Su, Q., “Tailored photoluminescence of YAG:Ce phosphor through various methods,” Journal of Physics and Chemistry of Solids 65, 845–850 (2004)
8.Wang, S.; Yamamoto, F.; Akatsu, T.; Tanabe, Y.; E. Yasuda, “Metastable precipitation of YAIO3 in isothermallysolidified YAG/(Al2O3-rich) spinel composites,” Journal of Material Science 33, 5157 – 5162 (1998)
9.Sim, S. M.; Keller, K. A.; MAH, T. I., “Phase formation in yttrium aluminum garnet powders syntheized by chemical methods,”Journal of material science 35, 713-717 (2000)
10.Li, X.; Liu, H.; Wang, J.; Cui, H.; Zhang, Hana, X., “Preparation of YAG:Nd nano-sized powder by co-precipitation method,” Materials Science and Engineering A 379, 347–350 (2004)
11.Xu, G.; Zhang, X.; He, W. ; Liu, H.; Li ,H.; Boughton, R.,“Preparation of highly dispersed YAG nano-sized powder by co-precipitation method,” Materials Letters 60, 962–965 (2006)
12.Wang, H.; Gao L.; Niihara, K., “Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method,” Materials Science and Engineering A288, 1–4 (2000)
13.Wu, Y.C.; Parola, S.; Marty, O.: Villanueva-Ibanez, M; Mugnier, J. “Structural characterizations and waveguiding properies of YAG thin films obtained by different sol-gel processes,”Optical Materials 27, Pages 1471-1479 (2005)
14.Guo, X.; Devi, P.S.; Ravi, B.G.; Parise, J.B., “Phase evolution of yttrium aluminium garnet (YAG) in a citrate– nitrate,” J Mater . Chem, , 14,1288 – 1292 (2004)
15.Roy, S.; Wang, L.; Sigmund, W. ; Aldinger, F.,“Synthesis of YAG Phase by citrate-nitrate combustion technique,”Materials Letters 39, 138-141(1999)
16.Lu, C.H.; Hsu, W.T.; Dhanaraj, J.; Jagannathan, R.,“Sol-gel pyrolysis and photoluminescent characteristics of europium-ion doped yttrium aluminum garnet nanophosphors,”Journal of the European ceramic society 24, 3723-3729 (2004)
17.Rosa, F.D.; Diaz-Torres, L.A.; Salas, P.; Arredondo, A.; Montoya, J.A.; Angeles, C.; Rodeiguez, R.A.,“,Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol-gel method,”Optical Materials 27, 1793-1799 (2005)
18.Zhang, J.J.; Ning, J.W.; Liu, X.J.; Pan, Y.B.; Huang, L.P.“Synthesis of untrafine YAG:Tb phosphor by nitrate-citrate sol-gel combustion process ,” Materials Research Bulletin 38, 1249~1256 (2003)
19.Hsu, W.T.; Wu, W.H.; Lu, C.H. “Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors”Materials Science and Engineering B104, 40-44 (2003)
20.Hareesh, U.S.; Vasudevan, A.K.; Warrier, K.G..K.; Berry, F.J.; Mortimer, M.; Vetel, F.F., “Dependence of precursor characteristic on temperature densification of sol-gel aliminium titanatw,”Journal of the European Ceramic Society 21, 2345-2351 (2001)
21.Pullar, R.C.; Taylor, M.D.; bhattacharya, A.K., “The Manufacture of YttriumAluminium Garnet (YAG) Fibers by Blow Spinning from s sol-gel Precursor,”Journal of European ceramic society 18, 1759-1764 (1998)
22.Towata, A.; Hwang, H.J.; Yasuoka, M.; Sando, M.; Niihara, K., “Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by sol-gel,”Composites part A32, 1127-1131 (2001)
23.Li, X.; Liu, H.; Wang, J.; Cui, H.; Han, F,“YAG:Ce nano-sized phosphor particles prepared by a solvothermal method,” Materials Research Bulletin 39, 1923–1930 (2004)
24.Iida, Y.; Towata, A.; Tsugoshi, T.; Furukawa, M.,“In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials,” Vibrational Spectroscopy, 19, 399–405 1999
25.Zhang, X.; Liu, H.; Heb, W.; Wang, J.; Li,X.; Boughton, R.I.“Synthesis of monodisperse and spherical YAG nanopowder by a mixed solvothermal method,” Journal of Alloys and Compounds, 372, 300–303 (2004)
26.Kang Y.C.; Lenggoro, I.W.; Park, S.B.; Okuyama, K.,“YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis,” Materials Research Bulletin, 35, 789–798 (2000)
27.Parukuttyamma, S.B.; Margolis, J. Liu, H.; Clare, P,; Sampath, G.S.; Herman, H.; Parise, J.B.,“Yttrium Aluminum Garnet (YAG) Films through Precursor Plasma Spraying Technique,” J. Am. Ceram. Soc, 84, 1906-908 (2001)
28.Marchal, J.; Tyrone, J.;Baranwal, R.; Hinklin, T.; Laine, R.M., “Yttrium Aluminum Garnet Nanopowders Produced by Liquid-Feed Flame Spray Pyrolysis (LF-FSP) of Metalloorganic Precursors”
29.Skandan, G.; Chen, Y.J.; Glumac, N.; Kear, B.H.,“Synthesis of oxide nanoparticles in Low pressure Flames,”Nanostructured Materials, 11, 149-158, (1999)
30.Lima, E.; Valente, J.; Bosch, P.; Lara, V., “Structural Evolution of Phosphated Alumina during Sol-gel Synthesis,”J. Phys. Chem. B.109, 17435-17439 (2005)
31.Sanchez-Valente, J.; Bokhimi, X.; Hernandez, F.“Physicochemical and Catalytic Properties of sol-gel Aluminas Aged under Hydrothermal Conditions,”Langmuir, 19, 3583-3588 2003
32.Kurikka, V. P.; Shafi, M.; Ulman, A.; Lai, J.; Yang, N.L.; and Cui, M.H. “A Newute to Alumoxane Gel: A Versatile Precursor to γ-Alumina and Alumina-BaSED Ceramic Oxides,”J. Am. Che. Soc, 125, 4010-1011 (2003)
33.Paumier, F.; Gaboriaud, R.J.; Kaul, A,R., “Yttrium oxide thin films: chemistry-stoichiomertry-strain and microstructure,”Crystal Engineering, 5, 169-175 (2002)
34.Moll, P.Y.; Huignard, A.; Antic-Fidancev, E.; Acgehoug, P.; Viana, B.; Millon E.; Perriere,J.; Garapon, C; Mugnier, J. “Eu3+ - and Tm3+ -doped yttrium oxide thin films for optical applications,”Journal of luminescence 87, 1115-1117 (2000)
35.Zhou, Y.H.; Lin, J.; Yu, M.; Han, H.M.; Wang, S.B.; Zhang, H.J., “Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis, ” Materials research bulletin 38, 1289~1299 (2003)
36.Kang, Y.C.; Lenggoro I.W.; Park S.B.; Okuyama, K., “Photoluminescence characteristics of YAG:Tb phosphor particles with spherical morphology and non-aggregation,” Journal of physics and chemistry of solids, 60, 1855–1858 (1999)
37.Iskandar, F.; Gradon, L.; Okuyama, K.; “Control of the morphology of nanostructured particles prepard by the spray drying of a nanoparticle sol” Journal of colloid and interface science, 265, 296~303 (2003)
38.Chang, H.; Okuyama, K., “Optical properties of dense and porous spheroids consisting of primary silica nanoparticles” Aerosol science, 33, 1701~1720 (2002)
39.Coward, H.F.; Jones, G.W., “Limits of Flammability of Gases and Vapors,” US Government Printing office, Washington DC. (1952)
40.Ehrman, S.H., Friedlander, S.K.; Zachariah, M.R., “Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame,” Journal of Aerosol Science, 29, NO.5/6, 687-706 (1998)
41.Glumac, N.G.; Goodwin, D.G.; “Large-area diamond film growth in a low-pressure flame.” Materials Letters, 18(3), 119-122 (1993)
42.Hinds, W.C., Aerosol Technology, John Wiley & Sons, New York (1999)
43.Lindackers, D.; Strecker, M.G.D; Roth, P.; Janzen, C; Pratsinis, S.E., “Formation and growth of SiO2 particles in low pressure H2/O2/Ar flames doped with SiH4” Combustion science and Technology, 123, 287-315 (1997)
44.Skandan, G.; Chen, Y.J.; Glumas, N.; Kear, B.H., “synthesis of oxide nanoparticles in low pressure flame,” NanoStructured Materials, 11, NO.2, 149-158 (1999)
45.Ulrich, G.D., “Theory of Particle Formation and Growth in Oxide Synthesis Flames,” Combustion Science and Technology, 4, 47-57 (1971)
46.Ulrich,G.D.; Riehl, J.W., “Aggregation and growth of submicron oxide particles in flame, “ Journal of Colloid and Interface Science, 87, No.1 (1982)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top