跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾志均
研究生(外文):Chih-Chun Chung
論文名稱:基於模糊邏輯探討藍芽網路中之散網建構
論文名稱(外文):On Scatternet Formation in Bluetooth Network using FuzzyLogic
指導教授:楊正仁楊正仁引用關係
指導教授(外文):Cheng-Zen Yang
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:40
中文關鍵詞:BluetoothFuzzy LogicRole SelectionScatternet FormationMulti-hop Network.
外文關鍵詞:BluetoothFuzzy LogicRole SelectionScatternet FormationMulti-hop Network.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來, 由於藍芽設備普及化, 使得藍芽網路成為建構一個無線個人區域網路(Wireless personal
area network, WPAN) 的重要技術。在藍芽規格書中指出, 藍芽網路有兩個網路型態–
微網(Piconet) 與散網(Scatternet)。在微網中, 各設備之間溝通必須透過Master 節點來做繞
徑。不同微網之間的設備若要互相溝通,則必須先指定Bridge節點以建立散網,再透過Bridge
做繞徑。過往的研究指出指出若能適當地決定角色, 就能夠提升整體系統的網路效能, 降低傳
輸延遲。
在本論文中, 我們提出一個散網建構機制, 稱之為FLSF(Fuzzy Logic-based Scatternet
Formation)。以模糊邏輯為技術核心,考慮藍芽設備的二個主要特性: 電量(remaining power)
以及連結性(connectivity),建立一個高穩定性(stability)之散網。經由模擬實驗的比較,FLSF
在Single hop 的環境下, 節點存活率的表現優於BTCP。在Multiple hop 的環境下, 網路重
建的情況也較BlueMesh 穩定。
簡而言之,FLSF 有兩項主要的優點: (1) 藉由考量設備電量特性與連結性, 降低拓樸的重建
次數。(2) 採用multi-hop 方式建構散網, 減少所需要耗費的電力, 延長節點存活時間。我們相
信FLSF 將可實際運用在藍芽裝置上以連結成大型WPAN。
Recently, Bluetooth becomes an important technique to form a wireless personal area
network. In the Bluetooth specification, there are two types of the Bluetooth networks –
piconet and scatternet. In a piconet, the slave devices must communicate with other slaves
through a master. To communicate with each other between two piconets, a bridge node
must be designated to form a scatternet. Past studies have pointed out that appropriate role
selection can improve the network performance and reduce the communication delay.
In this thesis, we propose a scatternet formation scheme based on fuzzy logic called
FLSF with considerations on two properties of Bluetooth devices, the remaining power
and the connectivity, to build a scatternet with high stability. The simulation results show
that FLSF scatternet has longer life time and is comparatively more stable.
To conclude, FLSF have two major advantages: (1) FLSF can highly reduce the number
of topology reformation, and (2) The FLSF scatternet has longer life time. We believe
that FLSF can be practiced in real Bluetooth applications to construct a large-scale
WPAN.
v
書名頁. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
符號說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 The Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Bluetooth Scatternet Construction . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 The Piconet Background . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scatternet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Single-hop Scatternet Formation . . . . . . . . . . . . . . . . . . 7
2.2.1.1 BTCP . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1.2 ASFS . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1.3 RDSF . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Multi-hop Scatternet Formation . . . . . . . . . . . . . . . . . . 8
2.2.2.1 PASRT . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2.2 LLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.3 BlueMesh . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The Background of Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Fuzzy Sets and Membership Functions . . . . . . . . . . . . . . 11
2.3.2 Fuzzy Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Fuzzy Logic System . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Fuzzy Logic-based Scatternet Formation . . . . . . . . . . . . . . . . . . . . . 15
3.1 Fuzzy Logic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 The FLSF scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Phase I: Initialization . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Phase II: Master Election . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Phase III: Bridge Election . . . . . . . . . . . . . . . . . . . . . 20
3.3 Scatternet Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Simulation Configurations . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Simulaiton Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
自傳. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
[1] Bluetooth Specification Version 1.2. Bluetooth Special Interest Group,
http://www.bluetooth.com.
[2] A. Aggarwal, M. Kapoor, L. Ramachandran, and A. Sarkar, “Clustering algorithms
for wireless ad hoc networks,” in Proceedings of the 4th International Workshop
on Discrete Algorithms and Methods for Mobile Computing and Communications
(MobiHOC 2000), Boston, Massachusetts, USA, August 2000, pp. 54–63.
[3] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network
research,” Wireless Communications and Mobile Computing, vol. 2, no. 5, pp. 483–
502, September 2002.
[4] H. Y. Chang and C. W. Yu, “A new scatternet formation protocol for Bluetooth
networks,” in Proceedings of the National Computer Symposium (NCS 2003), 2003,
pp. 955–961.
[5] ——, “Constructing long-lived scatternets in bluetooth networks,” International
Conference on Information Techonology and Application (ICITA 2005), vol. 02, pp.
283–288, 2005.
[6] F. Chun-Choong and C. Kee-Chaing, “BlueRings – Bluetooth scatternets with ring
structures,” in IASTED International Conference on Wireless and Optical Communication
(WOC 2002), Banff, Canada, July 2002.
[7] N. DARPA and ICIR, “The Network Simulator – ns2,”
http://www.isi.edu/nsnam/ns/.
[8] R. Guerin, E. Kim, and S. Sarkar, “Bluetooth technology key challenges and initial
research,” in Proceedings of the Society for Modeling and Simulation International
Conference on Network and Distributed Simulations, 2002, pp. 157–163.
[9] T. C. Huang, L. C. Shiu, and K. Y. Tsai, “An adaptive scatternet formation scheme
in Bluetooth personal area networks,” in Proceedings of the Fourth International Conference on Computer and Information Technology (CIT 2004), September 2004,
pp. 606–611.
[10] M. Kalia, S. Garg, and R. Shorey, “Scatternet structure and inter-piconet communication
in the Bluetooth system,” in Proceedings of the IEEE National Conference on
Communications, New Delhi,India, 2000.
[11] C. Law, A. K. Mehta, and K.-Y. Siu, “Performance of a new Bluetooth scatternet
formation protocol,” in Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc2001), Long Beach, California, USA, October
2001, pp. 183–192.
[12] ——, “A new bluetooth scatternet formation protocol,” Mobile Networks and Applications,
vol. 8, no. 5, pp. 485–498, 2003.
[13] Q. Liang, “Designing power aware self-reconfiguring topology for mobile wireless
personal area networks using fuzzy logic,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 33, no. 3, pp. 390–394, August 2003.
[14] T.-Y. Lin, Y.-C. Tseng, K.-M. Chang, and C.-L. Tu, “Formation, routing, and maintenance
protocols for the BlueRing scatternet of Bluetooths,” in Proceedings of the
36th Hawaii International Conference of System Sciences (HICSS’03), Big Island,
Hawaii, January 2003.
[15] K. Persson, D. Manivannan, and M. Singhal, “Bluetooth scatternet formation: criteria,
models and classification,” in Proceedings of the Consumer Communications
and Networking Conference, 2004. CCNC 2004, Big Island, Hawaii, January 2004,
pp. 59–64.
[16] C. Petrioli and S. Basagni, “Degree-constrained multihop scatternet formation for
Bluetooth networks,” in Proceedings of IEEE Global Telecommunications Conference
(GLOBECOM 2002), vol. 1, November 2002, pp. 222–226.
[17] C. Petrioli, S. Basagni, and I. Chlamtac, “BlueMesh: Degree-constrained multi-hop
scatternet formation for Bluetooth networks,” Mobile Networks and Applications,
vol. 9, pp. 33–47, February 2004.
[18] T. Salonidis, P. Bhagwat, and L. Tassiulas, “Proximity awareness and fast connection
establishment in Bluetooth,” in Proceedings of the First AnnualWorkshop on Mobile
and Ad Hoc Networking and Computing, 2000, MobiHOC 2000, 2000, pp. 141–142.
[19] T. Salonidis, P. Bhagwat, L. Tassiulas, and R. LaMaire, “Distributed topology construction
of Bluetooth personal area networks,” in Proceedings of Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
2001), vol. 3, 2001, pp. 1577–1586.
[20] ——, “Distributed topology construction of Bluetooth personal area networks,”
IEEE Journal on Selected Areas in Communications, vol. 23, no. 3, pp. 633–643,
February 2005.
[21] M.-T. Sun, C.-K. Chang, and T.-H. Lai, “A self-routing topology for Bluetooth scatternets,”
in Proceedings of the International Symposium on Parallel Architectures,
Algorithms and Networks (I-SPAN 2002), Manila, Philippines, May 2002.
[22] Q. Wang, “UCBT - Bluetooth extension for NS2 at the University of Cincinnati,”
http://www.ececs.uc.edu/ cdmc/ucbt/.
[23] Z.Wang, R. J. Thomas, and Z. Haas, “Bluenet – a new scatternet formation scheme,”
in 35th Hawaii International Conference on System Science (HICSS-35), Big Island,
Hawaii, January 2002.
[24] C.-H. Yang and J.-W. Ruan, “On-demand routing for Bluetooth scatternets subject to
device mobility,” in Proceedings of the 19th International Conference on Advanced
Information Networking and Applications (AINA05), 2005, pp. 363–366.
[25] L. A. Zadeh, Fuzzy sets. Information and Control, 1965.
[26] G. V. Zaruba, S. Basagni, and I. Chlamtac, “Bluetrees scatternet formation to enable
Bluetooth-based ad hoc networks,” in Proceedings of the IEEE International
Conference on Communications (ICC2001), 2001, pp. 273––277.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top